

Lecture Notes in Computer Science 3866
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Theo Dimitrakos Fabio Martinelli
Peter Y.A. Ryan Steve Schneider (Eds.)

Formal Aspects
in Security
and Trust

Third International Workshop, FAST 2005
Newcastle upon Tyne, UK, July 18-19, 2005
Revised Selected Papers

13

Volume Editors

Theo Dimitrakos
Security Research Centre
BT Group Chief Technology Office
2A Rigel House, Adastral Park, Martlesham, Ipswich IP5 3RE, UK
E-mail: Theo.Dimitrakos@bt.com

Fabio Martinelli
Istituto di Informatica e Telematica - IIT
National Research Council - C.N.R.
Pisa Research Area, Via G. Moruzzi, Pisa, Italy
E-mail: fabio.martinelli@iit.cnr.it

Peter Y.A. Ryan
University of Newcastle upon Tyne
School of Computing Science
Newcastle upon Tyne, NE1 7RU, UK
E-mail: Peter.Ryan@newcastle.ac.uk

Steve Schneider
University of Surrey
Department of Computing
Guildford, Surrey, GU2 7XH, UK
E-mail: S.Schneider@surrey.ac.uk

Library of Congress Control Number: 2006921788

CR Subject Classification (1998): C.2.0, D.4.6, E.3, K.4.4, K.6.5

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-32628-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-32628-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11679219 06/3142 5 4 3 2 1 0

Preface

This volume contains the post-proceedings of the Third International Workshop
on Formal Aspects in Security and Trust (FAST 2005), held in Newcastle upon
Tyne, July 18-19, 2005. FAST is an event affiliated with the Formal Methods
2005 Congress (FM05).

FAST 2005 aimed at continuing the successful effort of the previous two
FAST workshop editions for fostering the cooperation among researchers in the
areas of security and trust. The new challenges offered by the so-called ambi-
ent intelligence space, as a future paradigm in the information society, demand
for a coherent and rigorous framework of concepts, tools and methodologies to
increase users’ trust&confidence in the underlying communication/interaction
infrastructure. It is necessary to address issues relating to both guaranteeing se-
curity of the infrastructure and the perception of the infrastructure being secure.
In addition, user confidence in what is happening must be enhanced by devel-
oping trust models which are not only effective but also easily comprehensible
and manageable by users.

FAST sought original papers focusing on formal aspects in: security and
trust policy models; security protocol design and analysis; formal models of
trust and reputation; logics for security and trust; distributed trust management
systems; trust-based reasoning; digital assets protection; data protection; privacy
and ID issues; information flow analysis; language-based security; security and
trust aspects in ubiquitous computing; validation/analysis tools; Web service
security/trust/privacy; GRID security; security risk assessment; case studies etc.

This volume contains revised versions of 17 papers selected out of 37 sub-
missions and the extended abstract of one invited contribution. Each paper was
reviewed by at least three members of the international Program Committee
(PC).

We wish to thank the PC members for their valuable efforts in properly
evaluating the submissions, and the FM05 organizers for accepting FAST as an
affiliated event and for providing a perfect environment for running the work-
shop.

Thanks are also due to BCS-FACS and IIT-CNR for the financial support
for FAST 2005.

October 2005 Theo Dimitrakos
Fabio Martinelli
Peter Y.A. Ryan
Steve Schneider

FAST 2005 Co-chairs

Workshop Organization

Workshop Organizers

Theo Dimitrakos, BT, UK
Fabio Martinelli, IIT-CNR, Italy
Peter Y.A. Ryan, University of Newcastle, UK
Steve Schneider, University of Surrey, UK

Invited Speakers

Cédric Fournet, Microsoft Research (Cambridge), UK
Brian Randell, University of Newcastle, UK

Program Committee

Elisa Bertino, Purdue University, USA
John A. Clark, University of York, UK
Frédéric Cuppens, ENST Bretagne, France
Rino Falcone, ISTC-CNR, Italy
Simon Foley, University College Cork, Ireland
Roberto Gorrieri, University of Bologna, Italy
Masami Hagiya, University of Tokyo, Japan
Chris Hankin, Imperial College (London), UK
Valerie Issarny, INRIA, France
Christian Jensen, DTU, Denmark
Audun Jøsang, DSTC, Australia
Jan Jürjens, TU München, Germany
Yuecel Karabulut, SAP, Germany
Igor Kotenko, SPIIRAS, Russia
Heiko Krumm, University of Dortmund, Germany
Fabio Massacci, University of Trento, Italy
Stefan Poslad, Queen Mary College, UK
Catherine Meadows, Naval Research Lab, USA
Ron van der Meyden, University of New South Wales, Australia
Andrew Myers, Cornell University, USA
Mogens Nielsen, University of Aarhus, Denmark
Indrajit Ray, Colorado State University, USA
Babak Sadighi Firozabadi, SICS, Sweden
Pierangela Samarati, University of Milan, Italy
Ketil Stølen, SINTEF, Norway
Kymie Tan, Carnegie Mellon University, USA
William H. Winsborough, George Mason University, USA

VIII Organization

Local Organization

Alessandro Falleni, IIT-CNR, Italy
Ilaria Matteucci, IIT-CNR, Italy

Table of Contents

Voting Technologies and Trust
Brian Randell, Peter Y.A. Ryan . 1

On the Formal Analyses of the Zhou-Gollmann Non-repudiation
Protocol

Susan Pancho-Festin, Dieter Gollmann . 5

Formal Reasoning About a Specification-Based Intrusion Detection for
Dynamic Auto-configuration Protocols in Ad Hoc Networks

Tao Song, Calvin Ko, Chinyang Henry Tseng,
Poornima Balasubramanyam, Anant Chaudhary, Karl N. Levitt 16

A Formal Approach for Reasoning About a Class of Diffie-Hellman
Protocols

Rob Delicata, Steve Schneider . 34

Eliminating Implicit Information Leaks by Transformational Typing
and Unification

Boris Köpf, Heiko Mantel . 47

Abstract Interpretation to Check Secure Information Flow in Programs
with Input-Output Security Annotations

N. De Francesco, L. Martini . 63

Opacity Generalised to Transition Systems
Jeremy W. Bryans, Maciej Koutny, Laurent Mazaré,
Peter Y.A. Ryan . 81

Unifying Decidability Results on Protection Systems Using Simulations
Constantin Enea . 96

Proof Obligations Preserving Compilation
Gilles Barthe, Tamara Rezk, Ando Saabas . 112

A Logic for Analysing Subterfuge in Delegation Chains
Hongbin Zhou, Simon N. Foley . 127

Probable Innocence Revisited
Konstantinos Chatzikokolakis, Catuscia Palamidessi 142

Relative Trustworthiness
Johan W. Klüwer, Arild Waaler . 158

X Table of Contents

Secure Untrusted Binaries — Provably!
Simon Winwood, Manuel M.T. Chakravarty . 171

Normative Specification: A Tool for Trust and Security
Olga Pacheco . 187

Type-Based Distributed Access Control vs. Untyped Attackers
Tom Chothia, Dominic Duggan . 203

A Security Management Information Model Derivation Framework:
From Goals to Configurations

R. Laborde, F. Barrère, A. Benzekri . 217

On Anonymity with Identity Escrow
Aybek Mukhamedov, Mark D. Ryan . 235

Towards Verification of Timed Non-repudiation Protocols
Kun Wei, James Heather . 244

Author Index . 259

T. Dimitrakos et al. (Eds.): FAST 2005, LNCS 3866, pp. 1 – 4, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Voting Technologies and Trust

(Extended Abstract)

Brian Randell and Peter Y. A. Ryan

School of Computing Science, University of Newcastle upon Tyne
{brian.randell, peter.ryan}@ncl.ac.uk

In this extended abstract we describe initial steps towards a secure voting scheme that
could gain as high a level of public trust as is achieved by the existing UK voting
scheme. Such a scheme would, we suggest, need to be regarded by the general public
as being as understandable as well as at least as trustworthy (i.e. dependable and
secure) as the system they are already used to. Note that trustworthiness is a
necessary, but by no means always sufficient condition for achieving trusted status.
The challenge we are addressing is thus as much a socio-technical as a technical one.

The present-day voting process used in the UK national elections is a manual one
which involves the use of pre-printed paper ballots. These have a column of
candidates’ names printed down the left-hand column, and a right-hand column which
provides a corresponding set of boxes in which a vote or votes can be marked. The
entire voting process takes place under the close supervision of a set of independent
officials and, in the case of the vote-counting process, also representatives of the rival
candidates, under the protection of a strict legal regime.

Voters must previously have ensured that their names are on the electoral register.
They have to cast their votes at a particular voting station, and each such station has a
list of the voters who are registered to vote there. This list is marked as each voter is
given a ballot paper. Thus the same individual attempting to vote more than once, or
different individuals trying to vote using the same identity, especially at the same
voting station, is fairly readily detected, though using means which cause some to
have concerns regarding vote secrecy.

The current level of trust in the manual system used in UK national elections
appears to be due to its many years of largely unchallenged use, and the fact that the
general public can readily understand the system. The fact that it involves a large
number of independent, and probably rather hostile, observers, suggests that a
large number of votes cannot be subverted (changed, replicated or lost) other than by
the malicious activities of a large number of individuals, who would have to act for
the most part in collusion. This has led us to propose a rather simplistic but useful and
generally understandable measure of the merit of a voting system that we term its
insubvertibility, a robustness-related characteristic that is assessed by dividing the
number of votes that could be altered, faked or lost into the number of people who are
needed to achieve such alteration, faking or loss.

We take ballot secrecy, insubvertibility and understandability as the key
characteristics that need to be maximised. These are all too easily undermined by ill-
thought-out schemes of electronic voting, in which a very small number of people in
the right position might well be able to subvert the entire election! The approach we

2 B. Randell and P.Y.A. Ryan

take is to explore some possible improvements to the existing manual UK voting
system, in particular with regard to vote secrecy, accuracy and overall system
efficiency (via the introduction of automation), without compromising the system’s
existing merits. In this extended abstract we describe just the initial step in this
exploration.

In order to improve the voter secrecy provided by the existing manual system we
suggest use of a ballot paper based on that used in the Prêt à Voter scheme1. In this
scheme:

• the ballot papers are perforated vertically so that the column with the list of
candidates can readily be separated from that on which the voter has recorded her
vote,

• the order in which the candidates are listed varies randomly from ballot paper to
ballot paper, and

• the voter is allowed to choose a ballot paper for herself at random from a large
well-shuffled bundle of such papers.

However, as shown in the Figure, and in contrast to the Prêt à Voter scheme, at the
foot of each column is printed a unique vote identification number (VIN). The left-
hand column of the ballot paper (LHC) constitutes a vote receipt that can be retained
by the voter, while the right-hand portion (RHC) is carried forward into the vote
counting process. Although the LHC does not, once separated from the RHC, provide
any indication of how the voter cast her vote, it does provide an identifiable record of
the fact that a vote has been cast.

The crucial aspect of our scheme, inspired by the cryptographic technique involved
in the Prêt à Voter scheme, is that the RHC is, in effect, a so-called “scratch card”, in
that it contains a small rectangle of opaque coating which is initially obscuring a pre-
printed code. This code (OCN) identifies the order in which the candidates’ names
were printed in the left-hand column. The copy of the VIN at the foot of this RHC is
printed on this opaque coating. This coating can be scratched off, simultaneously
destroying the VIN and revealing the OCN.

As well as permitting the voter to choose her own ballot paper at random, she
would also be permitted – indeed encouraged – to take other ballot papers and
(i) assure herself that they varied with regard to the ordering of the candidates,
(ii) scratch off the VINs (thereby invalidating their use as ballots) and verify that the
revealed OCNs match the order of the candidates. (Such testing and discarding of
RHCs should be done under the supervision of the polling station officials to prevent
multiple voting.).

Actual vote casting requires the voter to proceed to a booth with a single ballot
paper with its VIN strip still intact. In the booth, she indicates her vote by placing a
cross in the appropriate cell on the RHC against the candidate of her choice in the
usual fashion. She then splits the ballot paper along the perforation down the middle

1 David Chaum, Peter Y.A. Ryan and Steve A. Schneider. A Practical, Voter-verifiable

Election Scheme. Proc. 10th European Symposium on Research in Computer
Security - ESORICS. Springer Verlag (2005).

 Voting Technologies and Trust 3

Fig. 1. A ballot paper – before voting and after it has been split and its OCN made visible

and, leaving the scratch strip intact so as to preserve the secrecy of her vote, posts the
RHC into a locked ballot box. When the vote casting period has ended, the secure
boxes of votes (RHCs) are taken from each voting station to a vote counting centre. In
order to interpret the vote value encoded on each RHC, the VIN strip must be
scratched off under supervision. (This is so as to minimise the possibility that ballots
are lost, altered or injected whilst at the same time ensuring that no-one can link the
VIN numbers to the resulting ballot papers reveal the OCN hidden underneath.)
Before the RHCs have their VINs scratched off, however, the VINs would be
recorded and published (e.g. via a secure web bulletin board) so that each voter can
use her vote receipt to check that her vote was indeed entered into the counting
process.

Once their OCNs have been revealed the RHCs can be used in a near-conventional
process of (well-scrutinised) manual vote counting. Given the general public’s
experience of and trust in scratch cards (which are likely to be even more familiar to
them than ballot papers) and in the act of shuffling playing cards, we believe that this
vote counting process and indeed the whole voting scheme could gain a level of
acceptance from the public regarding its overall trustworthiness comparable to that
enjoyed by the manual scheme that is currently in use in the UK. The additional vote
secrecy it provides should also be manifest to the general public.

However, major trust concerns arise when one moves away from the use of paper
ballots either partly (in that paper voting receipts might still be retained) or
completely, so that the vote casting as well as counting is all done essentially
invisibly, e.g. electronically. Even if the public have good reason to believe that
electronic versions of their votes are reaching the vote counting process safely, the

4 B. Randell and P.Y.A. Ryan

problem is to provide the public with continued reason to trust a vote counting
process that is not directly visible to ordinary officials and scrutineers.

For example, vote counting machines, or indeed voting machines, i.e. DRE (direct
recording electronic) devices, that have a conventional general-purpose computer and
operating system incorporated into them are problematic and likely to remain
controversial. Their use normally requires a degree of trust that the more technically-
aware voters in particular are, quite correctly, likely to be reluctant to provide. Indeed,
with electronic votes various forms of “online” manual checking by multiple
observers will normally have to be replaced or supplemented by (i) prior checking of
the design of possibly very sophisticated algorithms and devices, and (ii) ensuring the
continued relevance of the results of these checks up to and during the actual voting
process.

The Voter Verifiable Paper Audit Trail (VVPAT) scheme has therefore been
advocated as an adjunct to an electronic voting casting and counting system. Such an
approach depends on somehow ensuring (i) that the audit trail mechanism, rather than
the actual voting system per se, is adequately trustworthy, and (ii) that recourse will
be had to this audit trail mechanism whenever necessary.

An alternative approach is to use cryptographic mechanisms to make the counting
process highly transparent and auditable, within the constraints of ballot secrecy, and
to make the auditing processes public and open to scrutiny– this is the approach taken
in the Prêt à Voter scheme, for example. However, although with such voting
schemes the computers and the software involved need not be trusted, the arguments
for the trustworthiness of the overall voting system are subtle and require specialist
knowledge in order to be properly appreciated.

In our full paper, to appear in the IEEE Journal of Security & Privacy, we go on to
explore various developments of the basic scratch-card system, in a series of steps
towards actual e-voting. However, we have deliberately tried - in pursuit of user
acceptance and trust - to retain the familiarity and simplicity of current well-accepted
devices and systems. As a result, in most of our proposals we have deliberately sought
to retain at least some use of paper, and to avoid, or at least minimize the use of,
electronics and computers.

On the Formal Analyses of the Zhou-Gollmann
Non-repudiation Protocol

Susan Pancho-Festin1 and Dieter Gollmann2

1 Dept. of Computer Science, University of the Philippines-Diliman
sbpancho@up.edu.ph

2 TU Hamburg-Harburg, Germany
diego@tu-harburg.de

Abstract. Most of the previous comparisons of formal analyses of se-
curity protocols have concentrated on the tabulation of attacks found or
missed. More recent investigations suggest that such cursory comparisons
can be misleading. The original context of a protocol as well as the oper-
ating assumptions of the analyst have to be taken into account before con-
ducting comparative evaluations of different analyses of a protocol. In this
paper, we present four analyses of the Zhou-Gollmann non-repudiation
protocol and trace the differences in the results of the four analyses to the
differences in the assumed contexts. This shows that even contemporary
analyses may unknowingly deviate from a protocol’s original context.

1 Introduction

The observations derived from the comparative evaluation of formalisations and
analyses of the Needham-Schroeder public key and shared key protocols [1] sug-
gest that different protocol models affect the resulting analysis results, to the
extent that it explains why some analyses fail to find attacks detected by other
methods [2]. Although it is now generally accepted that this explains the previ-
ously undocumented attack discovered by Lowe [3] on the Needham-Schroeder
public key protocol, the wider effects of protocol models have not been always
considered in previous comparisons of protocol results. This results in the con-
tinued misinterpretation of a protocol’s security particularly when it is implicitly
assumed that different analyses are directly comparable without recourse to the
details of their protocol models.

Contemporary protocols encompass a larger scope. Some attempt to offer
security guarantees that do not fit traditional definitions of authentication, con-
fidentiality or integrity. The scope of newer protocols is broader, their properties
often more complex and the implementation details more convoluted. This pro-
vides a richer ground for misinterpretation of requirements and conflicts in both
formalisation and implementation. Intuition suggests that if differences in for-
malisation are already observed in relatively simple protocols such as those in the
Needham-Schroeder family, then the more recent and more complex protocols
are even more susceptible to the production of different protocol models, and pos-
sibly, to different analysis results. In this paper we present the Zhou-Gollmann

T. Dimitrakos et al. (Eds.): FAST 2005, LNCS 3866, pp. 5–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

6 S. Pancho-Festin and D. Gollmann

Non-repudiation protocol as an example of a contemporary, non-conventional
security protocol where differences in the results from several analyses are at-
tributed to changes in the assumed protocol context.

2 The Zhou-Gollmann Non-repudiation Protocol

The Zhou-Gollmann non-repudiation protocol [4] was analysed by its authors us-
ing the SVO logic [5], by Schneider using CSP/FDR [6] and by Bella and Paulson
using the Isabelle theorem prover [7]. These analyses did not report the more
recent attacks reported by Gürgens and Rudolph [8] using asynchronous prod-
uct automata (APA) and the simple homomorphism verification tool (SHVT).
The primary cause for the conflicting results is in the differences in assump-
tions among the four analyses with respect to the storage of evidence and the
behaviour of participants, particularly the trusted third party (TTP).

Non-repudiation is a fairly new security requirement compared to authenti-
cation and confidentiality. As such, there are fewer protocols that provide this
property; there are even fewer formal analyses of these protocols. The Zhou-
Gollmann (ZG) protocol [4] is unique in the sense that there are several existing
analyses of it; this allows us to compare how different methods formalise the new
concept of non-repudiation.

Non-repudiation is the property wherein both the message sender and re-
cipient obtain evidence of having sent or received a message, respectively. This
evidence must be independently verifiable by a third party. Evidence of receipt
is given to the message sender to prove that the recipient has received a message.
Evidence of origin is given to the message recipient to prove that the sender has
indeed sent a message.

In the ZG protocol, there is an additional requirement of fairness. It should not
be possible for either sender or recipient to be in a more advantageous position
over the other. Fairness ensures that both evidence of receipt and origin can only
be held after the protocol completes. If one party abandons a protocol session,
no acceptable evidence must be generated for that session.

The ZG protocol is shown in Figure 1. Note that, even if the commitment
C is produced via the encryption of the message M with key K, this is not
undertaken to ensure message secrecy. Rather, the commitment is first sent to
the recipient who signs it and returns it to the sender. Both the sender and
recipient’s signature on this commitment and its corresponding label L comprises
the first part of the evidence of receipt and evidence of origin respectively. To
complete both evidence, the sender and recipient must individually obtain con K
from the trusted third party via an ftp-get operation.

If A denies having sent the message M, B presents to the judge M, C, L, K,
EOO and con K. The judge will check if [4]:

– con K was signed by the TTP.
– EOO was signed by A.
– M = {C}K−1

On the Formal Analyses of the Zhou-Gollmann Non-repudiation Protocol 7

1. A → B : fEOO, B, L, C, EOO
2. B → A : fEOR, A, L, EOR
3. A → TTP : fSUB , B, L, K, sub K
4. B ↔ TTP : fCON , A, B, L, K, con K
5. A ↔ TTP : fCON , A, B, L, K, con K

where

– A ↔ B : X : A fetches message X from B via an ftp-get operation or some
analogous means. TTP is the trusted third party.

– L is a unique label
– K is the key
– C is the commitment, where C = {M}K

– fEOO, fEOR, fSUB , fCON : flags to indicate the purpose of a (signed) message
– EOO = (fEOO, B, L, C)SA : evidence of origin of commitment C
– EOR = (fEOR, A, L, C)SB : evidence of receipt of commitment C
– sub K = (fSUB, B, L, K)SA : evidence of submission of key K
– con K = (fCON , A, B, L, K)ST T P : evidence of confirmation of key K issued by

the TTP

Fig. 1. Zhou-Gollmann Non-repudiation Protocol

If these checks are confirmed then the judge upholds B’s claim. A similar
procedure is followed if the dispute concerns B’s denial of receipt of M . However,
the checks carried out by the judge rest on several assumptions which we will
discuss within our framework.

3 Modelling Protocol Goals

The protocol is defined by two general goals:

1. Non-repudiation, both of origin and receipt, and
2. Fairness

The first general goal requires that both A and B have evidence of receipt
and origin respectively. The second goal is an additional requirement, and has
been defined by the protocol authors as:

“Anon-repudiationprotocol is fair if it provides the originator and the recipient
with valid irrefutable evidence after completion of the protocol, without giving
a party an advantage over the other at any stage of the protocol run.” [4]

3.1 Zhou and Gollmann’s Analysis

In [5], the authors used the SVO logic [9] to verify their protocol. The protocol
goals were formalised from the point of view of the judge who will preside over
a dispute. Thus, the two general non-repudiation goals were formalised as:

8 S. Pancho-Festin and D. Gollmann

G1 The judge J believes (A said M).
G2 The judge J believes (B received M).

There are certain assumptions under which these goals are checked; in par-
ticular, the authors assumed that J holds the public signature verification keys
of A, B and the TTP as well as the evidence presented by A, B, or both. Other
assumptions relate to the behaviour of the TTP . This analysis did not formalise
fairness as an explicit protocol goal, which seems to be due to the limitations of
the belief logic SVO [5].

3.2 Schneider’s Analysis

In Schneider’s CSP analysis [6], the protocol goals were analysed from two dif-
ferent perspectives: the judge’s and the participants’. From the judge’s point of
view, the validity of origin and/or receipt claims is determined purely from the
evidence presented. The judge is assumed not to have observed the protocol run.
From each participant’s point of view, fairness is expected during the protocol’s
execution. Schneider asserts that participants can only expect fairness if they
follow the protocol [6].

Both non-repudiation and fairness were formalised in Schneider’s analysis.

1. Non-repudiation of Origin:
– B possesses EOO = (fEOO, B, L, C)SA

– B possesses con K = (fCON , A, B, L, K)STT P

It is assumed that if B has these signed messages as evidence as well as the
components L,C,M , and K, then A must have sent (fEOO, B, L, C)SA and
(fSUB, B, L, K)SA .

2. Non-repudiation of Receipt:
– A possesses EOR = (fEOR, A, L, C)SB

– A possesses con K = (fCON , A, B, L, K)STT P

It is assumed that if A has these signed messages as evidence as well as L, C,
M and K, then B must have sent (fEOR, A, L, C)SB and that B can obtain
(fCON , A, B, L, K)STTP from the TTP .

3. Fairness for A: If B has proof of origin for M , then the proof of receipt must
be available to A. This relies on the assumption that only A knows the key
K, and that A sends this key only once to the TTP . Thus, B will only obtain
the message M only when the TTP has made the key available to both A
and B.

4. Fairness for B: If A has proof of receipt for M , then the proof of origin must
be available to B.

3.3 Bella and Paulson’s Analysis

In [7], Bella and Paulson used the Isabelle theorem prover to analyse the ZG
protocol. Their formalisation of the protocol’s goals follows the same line as that
pursued by Schneider, i.e., both validity of evidence and fairness were modelled.

On the Formal Analyses of the Zhou-Gollmann Non-repudiation Protocol 9

In their analysis, the validity of evidence and fairness was specified in terms of
the guarantees that each party may expect from the protocol.

1. Guarantees for A: (To justify A’s claim that B did receive the message M .)
– Validity of Evidence.

• con K shows that A bound the key K to the label L. This means
that, since con K is available, the TTP has received sub K from A.
In sub K, A has bound K to L.

• The other evidence in A’s possession is EOR. This proves that B
has received A’s EOO, where A binds C to L.

– Fairness. If B holds con K, then either A has it, or it is made available
to A. This fairness guarantee for A also states that con K will not be
available if A has not submitted sub K; and A will not submit sub K
until A has received EOR from B.

2. Guarantees for B: (To justify B’s claim that A did send the message M .)
– Validity of Evidence.

• As with A, if B holds con K, then B could only have obtained this
via the ftp-get operation from the TTP . The TTP would have made
this available only if A has submitted sub K to the TTP .

• B also presents as evidence EOO, which shows that A has bound
the commitment C to the key K via the label L.

– Fairness. If A holds con K then it is also available to B.

3.4 Gürgens and Rudolph’s Analysis

In their analysis [8], Gürgens and Rudolph defined the protocol goals in terms
of predicates that must hold true for each participant.

1. For party A (originator), the predicate that must hold true is (NRR(B)).
This predicate states that if B has a valid EOO and con K for a particular
message M , then A must have a valid EOR and either possesses or has
access to con K.

2. For party B (recipient), the predicate that must hold true is (NRO(A)).
This predicate states that if A has a valid EOR and con K for a particular
message M , then B must have a valid EOO and either possesses or has
access to con K.

3.5 Remarks

Of the four analyses, three defined the protocol’s goals in terms of the correctness
of evidence as well as fairness. Only the SVO logic analysis [5] did not explicitly
formalise fairness. Thus, the SVO analysis is limited to results with respect to
the validity of evidence only. For the other analyses, goals were defined in terms
of the evidence each participant holds as well as what may be assumed with
respect to the availability of evidence to the other party.

10 S. Pancho-Festin and D. Gollmann

4 Modelling Cryptographic Schemes

The ZG protocol makes non-standard use of encryption wherein it is utilised not
to keep a message secret, but rather to split a message M into a commitment C
and a key K. The commitment C = {M}K is first sent out by the sender to the
recipient together with the sender’s signature on the commitment. The recipient
sends back its own signature on the commitment. The key K that will allow B
to decrypt the message is sent by A to the trusted third party TTP who checks
that the key and the label is signed by A. If this is the case, the TTP signs the
key, the label and the identity of the two parties. This signed message will now
be made available to both A and B via an ftp-like server allowing them to have
access to it.

All of the analyses we have considered have formalised the cryptographic
functions in an abstract manner and assumed perfect encryption. Keys cannot
be guessed and certain parties keep their private keys secret. Zhou and Gollmann
did not require specific properties as to the uniqueness of the key K. Bella and
Paulson [7] explicitly allowed for A re-using an old key to encrypt a message
M ; their only restriction was that A does not use private signature keys for this
purpose. They also assumed that the TTP checks if the key sent in message 3 is
indeed a shared key and not a private signature key1. Gürgens and Rudolph [8]
explicitly state that, in their interpretation of the ZG protocol, A must choose
a new label L and a new key K for each protocol run. Schneider [6] did not
specify an explicit assumption for the uniqueness of K. The implication of A’s
re-use of an old key is that other participants who have a copy of the key K
(perhaps from previous protocol runs conducted with A) can try out this key
for decrypting A’s commitments.

5 Modelling Communications

The protocol makes three important assumptions on protocol communications:

1. The communications link is not permanently broken. Since the protocol relies
on an ftp-get operation to allow parties A and B fair access to con K in the
last part of the protocol, it has to be assumed that, eventually, both parties
will be able to obtain this evidence from the TTP.

2. The TTP does not store evidence indefinitely. In [4], it was suggested that
timestamps be used to set a lifetime for the availability of the evidence from
the TTP. It is further assumed that the TTP does not overwrite existing
evidence stored in the public directory.

3. A message label is unique and creates a link between the commitment and
the key [4]. Zhou and Gollmann gave several suggestions on how this label
may be constructed:
– L, where L is independent of the message M . M can be defined at a

later stage in the protocol (step 3).
1 The check they perform relies on the length of shared keys and signature keys.

On the Formal Analyses of the Zhou-Gollmann Non-repudiation Protocol 11

– L = H(M) where H is a collision-free, one-way hash function. This links
L to M at step 1.

– L = H(M, K), if M belongs to a small message space.

We shall now see how these assumptions were formalised by the four analyses.

5.1 Zhou and Gollmann’s Analysis

In the protocol authors’ own analysis using SVO logic [5], they maintained the
same assumptions on communications, but did not formally model them.

5.2 Schneider’s Analysis

Schneider modelled communications via a medium through which all messages
are sent, received, or retrieved (in the case of the ftp-get operation). Schneider
further allowed for this medium to be unreliable with the following restrictions:

1. Messages cannot be altered in transit. Errors can occur in the transmission
but it is not possible for corrupted messages to be delivered; these messages
will be detected and disposed of. Schneider allows for deliberately altered
messages and assumes that the modification has been carried out by some
agent.

2. Messages cannot be mis-delivered. Initially, Schneider considered a more
unreliable medium which allows for messages to be mis-delivered. In that
context, however, Schneider discovered that fairness for party A cannot be
guaranteed since it is possible for the key K to be mis-delivered to B and
never reach the TTP .

Schneider did not model the expiry of the evidence stored at the TTP but
assumed a liveness property wherein, once a message has been made available
via ftp to an agent i, then it will “...always be available to any agent i′...” [6].

Schneider did not specifically model the uniqueness of the labels used in the
messages but did note that the label has to be unique for each protocol run.

5.3 Bella and Paulson’s Analysis

In Bella and Paulson’s analysis [7], a trace is a list of network events consisting
of either of the following:

– Says A B X: A sends X to B
– Gets A X: A receives X
– Notes A X: A notes down X

Their model does not force events to happen, i.e., it is possible that the pre-
conditions for a certain event have been met but the event does not occur. This
allows for assumption of an unreliable communications medium, i.e., a message

12 S. Pancho-Festin and D. Gollmann

that has been sent may not be received and protocol runs may be abandoned.
However, they did assume that messages cannot alter during transmission.

The uniqueness of labels was assumed and a label was modelled as a nonce.
They assumed that, for the first message in the protocol, A chooses a fresh label.
Bella and Paulson did not seem to consider setting a lifetime on the evidence
stored at the TTP .

5.4 Gürgens and Rudolph’s Analysis

In Gürgens and Rudolph’s analysis [8], they modelled the assumption that the
communications medium is not permanently broken by putting a restriction on
the behaviour of a dishonest agent. They assumed that a dishonest agent cannot
permanently block the delivery of sub K from A to the TTP nor the retrieval
of con K from the TTP . Thus, they assumed that a dishonest agent can only
remove messages to which it is explicitly named as the intended recipient.

They further assumed that the evidence in the TTP has a limited lifetime.
However, they imposed their own policy on the storage and lifetime of evidence
at the TTP . Evidence is available only until A and B have retrieved it. They
further assumed that the TTP has some way of determining whether A and B
have retrieved the evidence. These are additional assumptions and were not part
of the original protocol description. Although Zhou and Gollmann acknowledged
that the evidence cannot be kept at the TTP indefinitely, they did not specify
that the evidence be deleted soon after it is retrieved by both A and B. They
had proposed to use a timestamp defined by A relative to the TTP ’s clock; this
timestamp T specifies a deadline for the storage of evidence at the TTP . B can
refuse to acknowledge a commitment sent by A if B does not agree with the
deadline. This suggestion does not require additional actions on the part of the
TTP . Furthermore, the protocol authors did not require that A and B inform
the TTP that they have retrieved the evidence; they assumed that the TTP
only notarises message keys and provides directory services.

Gürgens and Rudolph’s Attack No. 1
α.1 A→ B : fEOO, B, L, C, EOO
α.2 B → A : fEOR, A, L, EOR
α.3 A→ TTP : fSUB, B, L, K, sub K
α.4 A↔ TTP : fCON , A, B, L, K, con K
α.5 B ↔ TTP : fCON , A, B, L, K, con K
β.1 A→ B : fEOO, B, L, C2, EOO2
β.2 B → A : fEOR, A, L, EOR2

This attack requires A to first complete a protocol run with B. After this
run, A possesses EOR signed by B and con K signed by the TTP . con K will
be deleted by the TTP after steps α.4 and α.5. In the second protocol run, A
uses the same key K and label L that it used in the first run but sends a new
commitment C2, where C2 = {M2}K . After receiving EOR2 from B, A can
present this together with the con K it received from the first run as “evidence”
of receipt for M2 although A will never complete the second protocol run.

On the Formal Analyses of the Zhou-Gollmann Non-repudiation Protocol 13

In the second attack, Gürgens and Rudolph considered that L = H(M, K).

Gürgens and Rudolph’s Attack No. 2
α.1 A→ B : fEOO, B, L, C1, EOO1

: where L = H(M2, K), C1 = {M1}K

α.2 B → A : fEOR, A, L, EOR1
α.3 A→ TTP : fSUB, B, L, K, sub K
α.4 A↔ TTP : fCON , A, B, L, K, con K
α.5 B ↔ TTP : fCON , A, B, L, K, con K
β.1 A→ B : fEOO, B, L, C2, EOO2

: where L is the same and C2 = {M2}K

β.2 B → A : fEOR, A, L, EOR2

The label L is constructed from the second message, M2 of A and the key K that
A will use for both runs. After α.5, B has K and C1. Although Zhou and Gollmann
did not explicitly state that A and B check the evidence they obtained, it is rea-
sonable to expect that A and B check their respective evidence since it is assumed
that the TTP is a lightweight notary only. When B detects that L and C1 do not
match, he would be warned against proceeding in protocol run β with A.

Gürgens and Rudolph’s third attack is against a variation of the ZG proto-
col that utilises timestamps [10]; we do not discuss this attack since the other
analyses refer to the original protocol.

6 Modelling Participants

In a non-repudiation protocol, it is expected that both parties at the outset do
not trust each other. It is for this reason that both parties wish to obtain evidence
of the other party’s participation in the protocol. In the SVO logic analysis [5],
it was assumed that the TTP is trustworthy. It was further assumed that either
party may abort a protocol run, without disputes, at certain stages. Since this
analysis was conducted from the point of view of a judge that will preside over
disputes, there were additional assumptions with respect to the public signature
verification keys of A, B and the TTP . It was assumed that these keys are valid.

Schneider [6] allowed for participants not following the protocol; however,
he assumed that a participant does not divulge his secret signing key. Each
participant is modelled in terms of the messages it can transmit and receive,
retrieve from the TTP and present as evidence in case of disputes. Schneider
further assumed that a participant can only expect fairness if it follows the
protocol. Bella and Paulson [7] assumed that A, B, and the TTP do not belong
to the set of compromised agents. Without this assumption, the intruder would
have access to SA, SB, and STTP .

Gürgens and Rudolph analysed scenarios wherein A deliberately tries to ob-
tain unfair evidence for a message. However, their attacks work not because
A was “allowed” to misbehave. The ZG non-repudiation protocol is motivated
by the possibility that A or B will not follow protocol rules. The Gürgens and
Rudolph attacks work because they redefined the behaviour of the TTP .

14 S. Pancho-Festin and D. Gollmann

7 Modelling the Intruder

In the SVO logic analysis [5], no intruder is modelled and the objective was to
determine the beliefs that may be derived by parties A and B. This was due
to the limited scope of a belief logic method [5]. In Schneider’s analysis [6], it
was observed that the two parties essentially need protection from each other.
Bella and Paulson [7] analysed the protocol both with and without a spy. The
spy is assumed to be capable of faking messages and is in control of a set of
bad agents. However, they did not include the TTP , A, or B in the set of bad
agents. Gürgens and Rudolph assumed that only B and the TTP are honest.

8 Conclusion

Schneider did not detect the Gürgens and Rudolph attacks since he did not
assume that evidence in the TTP server expires. Thus, in Schneider’s model, if
A attempts to re-use an old label, there will be duplicate entries in the TTP ’s
server and it is assumed that the TTP will detect this. Bella and Paulson did
not detect the attack since they also assumed the same properties for evidence
storage. Zhou and Gollmann’s SVO logic analysis was not intended to find flaws
in the protocol. Gürgens and Rudolph modified the original context by assuming
that evidence stored in the TTP is immediately deleted after A and B have
retrieved the evidence. They further assumed that the server would know when
to delete such a message. Thus, the two attacks they found are only relevant to
their version of the ZG protocol.

The Zhou-Gollmann non-repudiation protocol and its analyses presented re-
inforce the observation that incompatibilities in formalisations are not restricted
to the well-known discrepancies in the analyses of the Needham-Schroeder public
key and conventional key protocols. In order to objectively compare the results
of different analyses, it is clearly vital that we must take due account of the pro-
tocol’s original security context as well as the assumptions in the formal protocol
models.

Different analyses may be compared by comparing their security contexts. This
includes the definition of goals (both of the protocol and the analyses) and the
drawing out of assumptions with respect to communications, participants, cryp-
tographic functions, and the intruder. Discrepancies in at least one of these areas
could render differences in analyses results. Such observation may seem trivial,
but there is still a tendency in some comparative discussions to forget the security
contexts and instead concentrate on the discovery of supposedly new attacks.

9 Future Work

The observations derived from the four analyses of the Zhou-Gollmann protocol
were based on an informal comparison of five aspects of the protocol model. An
interesting extension of our work would be to determine if these five aspects (and
possibly others) could be formalised in a specific framework of analysis.

On the Formal Analyses of the Zhou-Gollmann Non-repudiation Protocol 15

It was shown how a “new” attack was discovered by one analysis through
the differences in its formalisation of the protocol. It would be natural to ask
whether such differences have resulted in the omission of attacks on this and
other protocols.

References

1. Needham, R., Schroeder, M.: Using encryption for authentication in large networks
of computers. Communications of the ACM 21 (1978) 993–999

2. Pancho, S.: Paradigm shifts in protocol analysis. In: Proceedings of the 1999 ACM
New Security Paradigms Workshop, ACM Press (1999) 70–79

3. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In: Tools and Algorithms for the Construction and Analysis of Systems.
Lecture Notes in Computer Science 1055, Springer-Verlag (1996) 147–166

4. Zhou, J., Gollmann, D.: A fair non-repudiation protocol. In: Proceedings of the
1996 IEEE Symposium on Security and Privacy. (1996) 55–61

5. Zhou, J., Gollmann, D.: Towards verification of non-repudiation protocols. In: Pro-
ceedings of 1998 International Refinement Workshop and Formal Methods Pacific,
Canberra, Australia. (1998) 370–380

6. Schneider, S.: Formal analysis of a non-repudiation protocol. In: Proceedings of
the 11th IEEE Computer Security Foundations Workshop. (1998)

7. Bella, G., Paulson, L.C.: Mechanical proofs about a non-repudiation protocol. In
Boulton, R.J., Jackson, P.B., eds.: Proceedings of the 14th International Conference
on Theorem Proving in Higher Order Logics. Number 2152 in Lecture Notes in
Computer Science, Springer Verlag (2001) 91–104

8. Gürgens, S., Rudolph, C.: Security analysis of (un-)fair non-repudiation protocols.
In: Proceedings of the Conference on Formal Aspects of Security. (2002)

9. Syverson, P.F., van Oorschot, P.C.: On unifying some cryptographic protocol logics.
In: Proceedings of the IEEE Symposium on Research in Security and Privacy.
(1994) 14–28

10. Zhou, J., Deng, R., Bao, F.: Evolution of fair non-repudiation with TTP. In: Pro-
ceedings of the 1999 Australasian Conference on Information Security and Privacy
(ACISP). (1999)

T. Dimitrakos et al. (Eds.): FAST 2005, LNCS 3866, pp. 16 – 33, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Formal Reasoning About a Specification-Based Intrusion
Detection for Dynamic Auto-configuration Protocols

in Ad Hoc Networks

Tao Song1, Calvin Ko2, Chinyang Henry Tseng1, Poornima Balasubramanyam1,
Anant Chaudhary1, and Karl N. Levitt1

1 Computer Security Laboratory, University of California, Davis
{tsong, ctseng, pbala, achaudhary, knlevitt}@ucdavis.edu

2 Sparta Inc., Saratoga, CA 95070
calvin.ko@sparta.com

Abstract. As mobile ad hoc networks (MANETs) are increasingly deployed in
critical environments, security becomes a paramount issue. The dynamic and
decentralized nature of MANETs makes their protocols very vulnerable to
attacks, for example, by malicious insiders, who can cause packets to be
misrouted or cause other nodes to have improper configuration. This paper
addresses security issues of auto-configuration protocols in ad hoc networks.
Auto-configuration protocols enable nodes to obtain configuration information
(e.g., an IP address) so that they can communicate with other nodes in the
network. We describe a formal approach to modeling and reasoning about auto-
configuration protocols to support the detection of malicious insider nodes.
With respect to this family of protocols, our approach defines a global security
requirement for a network that characterizes the "good" behavior of individual
nodes to assure the global property. This behavior becomes local detection rules
that define a distributed specification-based intrusion detection system aimed at
detecting malicious insider nodes. We formally prove that the local detection
rules (identifying activity that is monitored) together with “assumptions” that
identify system properties which are not monitored imply the global security
requirement. This approach, novel to the field of intrusion detection, can, in
principle, yield an intrusion detection system that detects any attack, even
unknown attacks, that can imperil the global security requirement.

Keywords: Formal reasoning, Intrusion Detection, Ad hoc network, Network
Security.

1 Introduction

Mobile ad hoc networks (MANETs), which offer infrastructure-less communication
over wireless channels, are envisioned to be an integral part of future computing.
MANETs are particularly attractive in application areas in which a fixed network
infrastructure either does not exist or is temporarily disabled because the MANET is
being employed in an environment subject to natural or malicious faults. Often, these
MANETs are deployed in highly critical environments and should be protected.

 Formal Reasoning About a Specification-Based Intrusion Detection 17

MANETs present a highly challenging environment [21, 6], requiring new approaches
to keeping them secure. The dynamic and distributed nature of a MANET makes it
vulnerable to security attacks. Unlike wired networks in which an attacker must gain
physical access to the wired link or sneak through security holes in routers or
firewalls, wireless attacks may come from anywhere. An important consideration is
the security of the protocols employed in MANETs. Protocols designed for MANETs
are highly cooperative, relying on all the participating nodes to follow the protocol. A
malicious node which deliberately performs bad operations in a MANET could highly
impact the operation of the entire network.

We take a specification-based intrusion-detection approach [10] to address the
problem of detecting insider attacks in MANETs. Specification-based intrusion
detection has been applied to successfully detect attacks on traditional [9] and ad hoc
network protocols [18]. Briefly, the approach requires that the valid behavior of a
node be identified (by an "expert", by discovery, or a combination of these two
approaches); network monitoring is employed to check the operations of nodes, where
any activity inconsistent with the specification is judged to be a violation. This
approach can be retrofitted on to existing protocols and complements other preventive
approaches. A unique contribution of this paper is that we employ formal reasoning to
analyze whether the detection rules, that constitute the specifications, are sufficiently
strong to detect all attacks, even unknown attacks, that violate security requirements.
The readers might be suspicious of our claim that all attacks are detectable. The keys,
as demonstrated in [16] are the assumptions used in the proof that, in effect, rule out
behavior not expected to occur and the fact that the proof of the detection rules
guarantee that any activity that threatens the overall network policy is detectable.

A specification-based Intrusion detection approach in a MANET is discussed in
[15]. In this paper, we focus the investigation on an auto-configuration protocol for
MANETs, namely the Dynamic Registration and Configuration Protocol (DRCP) [11,
20]. DRCP is a subnet configuration protocol that enables a node to obtain configuration
information (e.g., an IP address) in order to communicate in wireless networks. Besides
ad hoc routing protocols, auto-configuration protocols, such as DRCP, are critical
elements in a MANET. DRCP has been proposed to overcome shortcomings of
Dynamic Host Configuration Protocol (DHCP) and facilitates dynamic, rapid and
efficient configuration in the unpredictable ad hoc wireless network environment. Due
to mobility, instability of wireless links, and other unpredictable environmental
characteristics, auto-configuration protocols designed for MANETs usually allow
multiple nodes to provide configuration information to improve performance. These
extensions, coupled with mobility, make it difficult to assure the security posture of the
network. Thus, the design of the intrusion detection system benefits from a formal
approach to reasoning about security – the focus of this paper.

We define a global security requirement for the subnet operating with the DRCP
protocol and analyze the local detection rules that are intended to restrict the behavior
of individual nodes. We have developed a proof framework for reasoning about
security, through which we formally prove that the local detection rules ensure the
global security requirements.

There are two significant contributions to this paper. First, we analyze security
aspects of DRCP, including security requirements and possible generic attack

18 T. Song et al.

methods on DRCP, and propose a specification-based intrusion detection mechanism
to ensure that these security requirements are met; our intrusion detection system is
requirements-driven rather than attack-driven. Second, we developed a formal model
for DRCP and verified the enforcement of the security requirements; the proof is
carried out using the ACL2 theorem prover [8]. We chose the DRCP protocol for
study since it possesses features that are characteristic of other auto configuration
protocols that may be used in MANETs, making the general results of the study
applicable and useful for other MANET auto-configuration protocols.

Specification-based intrusion detection is an IDS methodology that compares, at run
time, the behavior of objects with their associated security specifications, the latter
capturing the correct behavior of the objects. The specifications are usually manually
crafted based on the security policy, the expected functional behavior of the objects,
and the expected usage. Specification-based detection does not detect intrusions
directly -- it detects the effect of the intrusions as run-time violations of the
specifications. This approach has been successfully applied to monitor security-critical
programs [9], applications [7], and protocols [9, 18, 19], and is beginning to be used in
commercial host-based intrusion detection products. Since the approach provides a
systematic framework for developing specifications/constraints such that security
breaches may be described as violations of these constraints, it can detect known as
well as unknown attacks. An added benefit is that such an approach, as it rests on
specifications, can support reasoning which in our case demonstrates that the rules that
define the intrusion detection system together with certain assumptions are sufficiently
strong to guarantee that the intrusion detection system will detect all attacks that could
case the overall security requirements of the MANET to be violated.

The remainder of the paper is organized as follows. A framework for reasoning is
introduced in Section 2. Section 3 provides a brief overview of the DRCP protocol
and attacks against the protocol. We present a specification-based IDS in Section 4.
Formalization and verification are covered in Section 5. Section 6 discusses our work
relative to others’ in intrusion detection and in formal methods as applied to security
reasoning. Section 7 concludes the paper along with a brief description of our
ongoing and future work.

2 Formal Network Model and Hierarchical Framework

2.1 A Hierarchical Framework for Formal Reasoning

Figure 1 depicts a hierarchical framework to verify security aspects of protocols,
DRCP being the one under study in this paper. In this framework, a formal network
model is used to focus on abstract security-critical properties of ad hoc networks. We
define security requirements of DRCP and reason about the enforcement of the
security requirements by a specification-based intrusion detection system,
characterized itself by a formal model. There are two important components for the
specification-based intrusion detection - formal specifications and monitoring
mechanisms. The formal specifications define valid behavior of DRCP nodes, and the
monitoring mechanisms collect information from the ad hoc network and analyze

 Formal Reasoning About a Specification-Based Intrusion Detection 19

A formal network model (N)

Formal specifications for protocols(S)

Security requirements of protocols (SR)

Verification: N^M^H^S=>SR

Monitoring (M) Assumption (H)

Fig. 1. Hierarchical Framework for Verification

the behavior of DRCP nodes according to the formal specifications. The main goal of
our verification is to prove that the specification-based IDS can achieve the stated
global security requirements of a DRCP network. Assumptions are introduced to
cover some properties that may not be covered by the intrusion detection approach,
for example functionality that (we assure and believe) cannot be impacted by an
attacker. A similar framework was used to reason the detection rules of host-based
IDS [14, 16].

2.2 A Formal Network Model

The network model defines security-critical elements of a MANET. A network is
defined as a tuple (N, S, OP, s0, δ), where N is a set of nodes, S is a set of possible
states, OP is a set of network operations, s0 is the initial state and δ is a function
which maps network operations from a previous state to a current state.

A network trace is a sequence of events, e.g. e1,…ek, that occurs in the network.
The sequence of events moves the network from s0, to s1, …to sk. Denote T as the

set of possible traces (T = {E*}).
The state of a network comprises the states of individual nodes. Let NS be a function

that return the state of a node i, when the network is in state S, NS(S, i) -> state of node i.
A Connection matrix C is an important component of the current state. C[i][j]

denotes the whether there is a direct link between node i and node j. The connection
matrix will be updated according to dynamic changes of the DRCP network.

Security requirements describe properties of systems inspired by the traditional
concerns: confidentiality, integrity, and availability of resources. A security
requirement is defined as a function SR, which accepts network traces as input and
returns true if these network traces satisfy the requirement. A security requirement SR
characterizes a set of authorized network traces AT, which includes all network traces
that satisfy the security requirement.

In our approach, formal specifications are used as detection rules in specification-
based intrusion detection. Each specification is denoted as a function SP and defines a

20 T. Song et al.

set of valid network traces VT, which includes all finite traces of a network accepted
by the specification. Any trace violating the specification will not be members of the
valid set VT, and will be detected by the intrusion detection.

In our verification, we attempt to answer the question of whether a valid trace defined
by formal specifications is an authorized trace defined by security requirements. We
claim that security requirements are enforced by specifications if a set of valid traces VT
defined by the specifications is a subset of the set of authorized traces AT defined by the
security requirements. If the security requirements are enforced, any trace violating the
security requirements (outside authorized set AT) will be detected by the specifications
(outside valid set VT). The verification is carried out with ACL2 theorem prover, and the
enforcement of security requirements is defined and proved as theorems in ACL2.

2.3 Automated Verification with ACL2

ACL2 is a re-implemented extended version of Nqthm [5], intended for large scale
verification efforts. The ACL2 system consists of a programming language based on
Common Lisp, a theory based first order logic and total recursive functions, and a
theorem prover [8].

ACL2 has two significant advantages for our purposes: scalability and automatic
proof. ACL2 has been successfully used to reason about the logic of industrial
applications, including the AMD5K86 floating-point division proof [4] and the JAVA
virtual machine proof [12]. Proofs of theorems in ACL2 are automatically established
by the theorem prover using mathematical induction and other methods, but human
intervention is usually required to introduce lemmas that guide a proof. In the
mechanization of our framework, structures and functions in ACL2 are used to
formalize declarative components of the framework, including an abstract network
model, formal specifications of DRCP, assumptions, and security requirements. To
perform the verifications, we define appropriate theorems in ACL2 and prove them
using mathematical induction and the other proof mechanism of ACL2.

3 Overview of DRCP

DRCP provides rapid client configuration and reconfiguration in a MANET. In
particular, DRCP allows rapid configuration and detects the need to reconfigure
without relying on signals from other layers. The primary configuration data obtained
using DRCP is an IP address. Once a node has an IP address, it can then communicate
with other servers to obtain additional information. Other configuration information
such as IP addresses of DNS servers and of DCDP (Distributed Configuration
Distribution Protocol) [11] servers can be provided using DRCP.

A node with a DRCP process running is initially assumed only to know which of
its interfaces are configured using DRCP. If there are multiple interfaces, then some
interfaces may be configured by DRCP, others are configured manually. After boot-
up, a node assumes all of its DRCP interfaces are configured to be DRCP clients and
attempts to discover a DRCP node acting as a DRCP server. The client continues to
send DRCP_DISCOVER messages broadcast on the local subnet to the
DRCP_SERVER_PORT. On discovering a DRCP server, the node gets configuration
information and starts communicating within the network.

 Formal Reasoning About a Specification-Based Intrusion Detection 21

g

EE

1

2
A

1

2
B

1

2
D

1

2
C

E

1

2
AAA

1

2
BBB

E

1

2
A

1

2

1

2
C D

1

2
B

(a) (b)

Fig. 2. Example Operation of DRCP

If a DRCP interface does not have a local address pool, it remains a DRCP client.
A node becomes a DRCP server for an interface when it has configuration
information, including an address pool. A DRCP node does not get this configuration
information through DRCP, but from preset information (e.g., in a configuration file)
or another protocol like DCDP.

A DRCP server takes the first address from its address-pool and other
configuration information to configure its own interface for that subnet. The node is
then ready to serve other nodes on that subnet. An interesting but security-challenging
characteristic of DRCP is that a node can act as a DRCP Server on some of its
interfaces and a DRCP Client on other interfaces. We illustrate how a node could be
both a server and a client using an example network shown in Figure 2.

The example shows five network nodes, A, B, C, D each having two network
interfaces, and a border gateway node E. The border gateway runs both DRCP and
DCDP protocols. Initially, A, B, C, and D are not configured. The DRCP server
program running on node E periodically broadcasts a DRCP_ADVERTISE message,
which reaches nodes A and B. Nodes C and D do not get the message because they
are not sufficiently close to E. Upon receiving a DRCP_ADVERTISE message, node
A broadcasts a DRCP_DISCOVER message. Node E then sends back a
DRCP_OFFER message to A with the configuration data (IP address). Node B
performs similar actions to obtain configuration data. After these message exchanges,
nodes E, A, B form a subnet.

In figure 2(a), after the subnet E, A, B, is formed, Node A obtains an IP address
pool from E and becomes a DRCP server for interface 2. Nodes C and D then can
obtain configuration information from Node A (figure 2(b)) and form a subnet (A,
C, D). This example illustrates that multiple subnets can be formed, and a node can
serve as a DRCP client on one interface and as a DRCP server on another interface.
Nevertheless, a node is either a DRCP client or a DRCP server for a single
interface.

22 T. Song et al.

3.1 DRCP Vulnerabilities and Attacks

In general, DRCP node vulnerabilities fall into three categories:

1. intentional overuse of scarce resources by the rogue node itself,
2. intentionally causing other nodes to overuse scarce resources by a rogue node
 improperly using its forwarding function,
3. lying about the content of configuration information either by a rogue node
 corrupting messages that it is forwarding, or by supplying incorrect
 configuration information when acting as a DRCP server.

According to these vulnerabilities, a rogue node can:

1. continuously send DRCP_DISCOVER messages requesting new IP addresses to
 cause the DRCP server run out of IP addresses
2. continuously send DRCP_DISCOVER messages with other nodes’ MAC
 addresses
3. provide incorrect DNS server address or IP address in DRCP_OFFER message
 sent from a DRCP server
4. pretend to be a legitimate DRCP server and send DRCP_OFFER with incorrect
 DNS information or IP address

A rogue node can use these generic attack methods to launch very sophisticated
attacks. For example, the rogue node could identify itself as the DNS server, field
DNS queries from a victim node, and supply answers that cause information to be
sent to incorrect rogue nodes. Or a rogue node can erroneously report another as of
yet un-compromised node as a standard server in hopes that the volume of requests
misdirected to that other node will result in a successful DOS attack on that node.

Also, a rogue DRCP server can:

1. intentionally ignore DRCP_DISCOVER messages from a victim node
2. send DRCP_OFFER with incorrect DNS information or IP address. Without
 initial configuration information, the victim cannot obtain an IP address and is
 therefore not able to communicate with any other node. Note that because of the
 hierarchical manner in which nodes become DRCP servers, incorrect data
 supplied by a rogue DRCP server will be propagated to all lower nodes, thus
 amplifying the extent of corruption.

3.2 Example DRCP Attacks

Figure 3 depicts an example attack that makes use of a DRCP vulnerability, the effect
being to deny a legitimate node from communicating with the network. In particular,
the attacker (a rogue node) provides incorrect configuration information (e.g., IP
address, DNS address) to a newly arrived node E. The effect could be that node E is
denied from communication with the network In addition, node E could be fooled into
using wrong information that causes further damage to the network. The scenario is
described as follows.

 Formal Reasoning About a Specification-Based Intrusion Detection 23

B

A

C

E

X

Border gateway, DCDP Server

1. DRCP Discover
message is broadcast

F

3. Reply from
real server

4. Legitimate
offer dropped

2. Attacker replies with
bogus DRCP message

Fig. 3. Example DRCP Attack

1. A node E moves to the subnet and broadcasts a DRCP Discover message to
 obtain an IP address and other information for communication with the subnet.
2. An attacker node, after observing the DRCP Discover message from node E,
 replies to E with a bogus DRCP Offer message that has incorrect information.
 This message reaches node E first and is used by node E to configure its node.
3. Node B, which is a DRCP, receives the DRCP Discover message and replies
 with a correct DRCP Offer message.

Node E, having already obtained the bogus DRCP Offer message, drops the DRCP
Offer message forwarded by node E.

We do not claim that the vulnerabilities presented are exhaustive, but they permit a
wide variety of attacks – too many and too rich to be amenable to conventional
signature-based intrusion detection. In the next section, we describe our specification-
based intrusion detection approach that is capable of detecting any attack that exploits
the vulnerabilities.

4 A Formal Specification-Based Intrusion-Detection

This section introduces the specification-based intrusion-detection approach we
employ to protect a DRCP network. Other intrusion detection approaches include
signature-based detection [13, 2] and anomaly detection approaches [1]. While
signature-based detection offers low detection latency and a low number of false
positives, it requires well-established signatures to be in place. In the case of the
anomaly detection approach, "normal" profiles, usually statistical, need to be built
from network and individual system events, including possible user and system
activities. It will be a significant challenge to establish and dynamically tune normal
profile in this domain so that the false positive rate is not unacceptably high. While
statistical anomaly detection, in principle, can detect unknown attacks, the success of
this methodology depends greatly on establishing effective normative profiles - a
considerable challenge in a noisy wireless dynamic environment. As opposed to these

24 T. Song et al.

approaches, the primary goal of the specification-based approach is to detect when a
system / network fails to meet certain global security requirements. In addition, the
approach identifies the root cause of the failure so that corrective action can be taken
to deal with an intrusion.

Our approach involves decomposition of the global security requirements into
formal specifications of individual network nodes. Cooperative network monitors are
used to observe the behavior of individual nodes and report alerts when a node
violates the local behavioral specifications. The approach has the advantage that the
security officers are able to understand at a high level the security property that
the intrusion detection system guarantees. In addition, the approach can, in principle
detect all attacks (known or unknown) that cause the system to fail to meet the global
security requirements but with few false positives. False positives may be caused by
specifications that are too strong for the global security requirements or by their being
a similarity between attacks and normal behavior of the system. For example, a very
mobile node can cause a DOS attack. In contrast, signature-based intrusion detection
can only detect known or variants of known attacks but with few false positives, and
anomaly-based intrusion detection can detect unknown attacks but at the expense of
many false positives which are caused by non-proficiency of the statistical rules.

4.1 Global Security Requirement

Our formal network model consists of a collection of mobile computing nodes, each
running a DRCP agent. In our approach, the ultimate goal of the intrusion detection
system is to ensure that the network of DRCP nodes can meet certain global security
requirements that are critical to the mission of the MANET. The security requirements
can encompass many aspects of security (e.g., integrity, availability) in addition to
cryptographic requirements on the messages being exchanged. Our focus for the IDS is
to achieve security requirements that are related to the integrity and the availability of a
DRCP network. Informally, a general critical security requirement for DRCP is:

An unconfigured network node in a subnet must be configured with a correct
IP address (as well as DNS, default router, networking mask) within X seconds.

Table 1. System Requirement for DRCP

 Security requirements Aspects Corresponding attacks
1. A network node in a subnet will be

configured with an unused IP
address of the subnet.

Safety Rogue server, IP spoof

2. No two nodes have the same IP
address.

Safety IP spoof

3. A network node in a subnet will be
given correct configuration
information, including default
router, DNS server, and network
mask.

Safety Man-in-the-middle
attack

4. A node without an IP address will
be given one within X seconds

Liveness DOS attack

 Formal Reasoning About a Specification-Based Intrusion Detection 25

Such a requirement is obviously important since a network node needs correct
configuration information in order to communicate with other nodes in the network.
To support reasoning with respect to the requirement, we break it down into the four
properties listed in Table 1; we view a requirement as being safety-related if it bears
on integrity, and liveness-related if it bears on availability.

The identification of global security requirements of a DRCP network determines
what activity the IDS must detect. Give a global security requirement, one can reason
about, informally, about whether a given attack will be detected. For example, given
the stated security requirements of DRCP, it is easy to see that the IDS can detect the
attack described in Section 3. Obviously, a more formal analysis is needed to further
assure that the IDS can really detect the attack. This can be performed using the
formal framework described in section 5.

One simple way to detect breaches of the global security requirement is to observe
the activity of the whole network and check whether it breaks the global security
requirements. As the global security requirements are usually concerned with global
properties of the network, checking for these global security requirements requires
collection of all activity in the network and keeping track of the global state. As an
example, in order to check whether property 1 has been breached, one could keep
track of all assigned IP addresses and the network messages that are associated with
the assignment of IP addresses. Nevertheless, such a centralized monitoring approach
is inappropriate for a MANET because of the mobility of nodes and bandwidth
limitations – an IDS that requires as much bandwidth as the normal functions of the
MANET is unacceptable.

In contrast, our intrusion detection approach focuses on the behavior at
individual network nodes. We enforce the global security requirements by
deploying local behavioral specifications for individual network nodes such that
the local behavioral specifications imply the global security requirements as
depicted in figure 4. The local behavioral specifications are constraints on the
operation of the nodes that can be checked by external monitoring (i.e., monitoring
the messages it sends and receives). We assume that an aggregating mechanism is

Local
Local

Local

Local

Local

Local

Global Requirements

Fig. 4. Global Requirements and Local Specification for DRCP protocol

26 T. Song et al.

used to collect states of the network. Network activities of individual nodes are
monitored to detect breaches of the local behavioral specifications with respect to
local data and some (not all!) system data collected from other nodes, e.g. IP
address of other nodes. For the most part, if no violation of local behavioral
specifications is detected in any node, one can be assured that the global security
requirements are satisfied.

4.2 Motivation for Local Behavioral Specifications

Towards producing a local behavioral specification of the protocol, we formalize
parts of the protocol specification that are security-relevant (i.e., related to the global
security requirements). The local behavioral specification captures, formally, the
behavioral of a node in sending and responding to protocol messages. Then, we
employ formal verification techniques to guarantee that the set of local behavioral
specifications imply the global security requirements.

Suppose it is true that the specification is strong enough so that the global security
requirement can be guaranteed if all the DRCP agents adhere to the specification.
Then, one should be able to formally verify that the specification implies the system
requirements. Otherwise, there are weaknesses in the specification, and the
verification system may output a counterexample showing a sequence of events that
leads to the undesirable situation. This sequence if synthesized by the theorem prover,
constitutes a "signature" of an attack that is not noted by the IDS. One could, in
principle, monitor the entire system to see whether this sequence occurs – but
focusing the IDS on local rules is more efficient.

Again, why do we monitor for violation of the individual constraints of DRCP
agents instead of directly monitoring activity with respect to the global system
requirements? While it is nice to know that some global DRCP system requirement
has been violated, it is more informative to know what is the root cause. A major
benefit of our specification-based approach is that it provides knowledge of the
latter. If we monitor for violation of global requirements, additional reasoning is
required to determine the root cause. An example of such a requirement is "if a
client sends a request it must obtain a valid IP address within a fixed amount of
time". Detecting that this requirement is violated does not tell anything about
potential root causes such as: (a) the server sends out incorrect IP addresses and
invalid messages in general (b) the server ignores requests, or (c) there is an agent
that requests IP addresses at abnormally high rates and has therefore depleted the
server's address pool.

In addition, in many cases it not practical to monitor for the system requirement
directly. This is because the detector usually possesses only local information, and
evaluation of the global system requirement usually requires global knowledge about
the current state of the system. Therefore, if we are able to enforce global system
requirements with local behavioral specifications (i.e., those that must be satisfied by
DRCP processes) and detect an alert, we simultaneously obtain a root cause. No
further reasoning is required. In fact, the reasoning has already been performed by
formal verification that shows how local behavioral specifications imply global
requirements.

 Formal Reasoning About a Specification-Based Intrusion Detection 27

4.3 Generation of Local Behavioral Specification

We choose ESTELLE[3] to formally capture the behavior of the DRCP protocol;
later we translate this description into ACL2 to support verification. ESTELLE is an
ISO standard and has been used in formal description and analysis of several military
link-layer and network-layer protocols. ESTELLE, which is based on Extended Finite
State Machine (EFSM) theory, is well-suited to model network protocols.

Figure 5 depicts the server part of the DRCP Local behavioral specification. The
specification is derived from an informal protocol specification as well as from other
DRCP documents. The DRCP agent will move to the “Server Init” state if it has
obtained a configuration pool (e.g., locally configured or obtained through DCDP).
The server can send a DRCP_ADVERTISE message periodically send a Gratuitous
DRCP_OFFER for existing IP address. Upon receiving a DISCOVER message, it will
send a DRCP_OFFER to offer an unused IP address to the requesting client. The local
behavioral specification of DRCP in ESTELLE is listed below. The specification
basically describes the possible states of a DRCP node and how the node transitions
from one state to another state when an event occurs.

body Node_BODY for NODE;
state INIT, DISCOVERING, BINDING, SERVER,WAITING;
initialize to INIT; //initial state
trans when GetIPPool() from Init to Server_Init; //change the state to Server if an

IP pool is
available

trans when SetIPPool() from Server_Init to Listen;//ready to accept DRCP
requests after

being configured
trans when send(unicast.Gratuitous_Offer) from Listen to Listen;//send out

Gratuitous offers
trans when broadcast.DISCOVER // broadcast DRCP Discover
 from Listen to Reply;
 from Reply to Reply;
trans when unicast.DISCOVER //unicast DRCP Discover
 from Listen to Reply;
trans when send(unicast.OFFER(ipinfo)) //send out DRCP offers
 from Reply to Listen;……

If the original DRCP design is sufficient to guarantee all required properties, then
one can just use the formal protocol specification as the detection rule to detect the
presence of network activity such that the properties will not hold. Otherwise, we
need to define additional constraints on the behavior of the DRCP agent in order to
guarantee the required properties. Formal reasoning techniques can tell whether the
specification is sufficiently strong to guarantee certain security properties. In this
paper we first consider properties that can be assured with the current DRCP design.
In particular, we focus on two top-level requirements:

• DRCP nodes will be configured with an IP address in the subnet, and
• No two nodes have the same IP address

28 T. Song et al.

Reply

Listen

1. Recv DISCOVER

2. Send OFFER
3. Send Gratuitous OFFER

4. Send ADVERTISE

4. Send ADVERTISE

Has obtained
Configuration Pool

Server Init

Assign an IP
address to itself

Fig. 5. An EFSM Model of DRCP – Server Part

5 Formalization and Verification

This section discusses our experience in applying formal methods to assure that the
specification-based intrusion detection system can achieve what it claims: it can
guarantee the detection of any activity that impacts the global security requirements. In
general, formal methods are mathematically based techniques that rely on descriptions
of system elements and properties, and enable one to show that the system elements
achieve more abstract properties of the system. Formal methods provide a framework in
which one can specify, develop, and verify systems in a systematic manner.

5.1 Formalization of Security Requirements

We have developed a framework for formal reasoning about the cooperative
monitoring of the DRCP protocol. This framework consists of a network model, a
monitoring model, behavioral specifications, assumptions, and security requirements.
Security requirements are abstract properties that represent what it means for the
DRCP protocol to be secure; we believe our requirements capture such behavior, but
recognize that other requirements are possible – and can be dealt with in our
methodology. Formal methods, including formal specification and analysis
techniques, are used to describe the behavioral specification as well as in
mathematically proving that the behavioral specification is strong enough to
guarantee certain critical system requirements. The security requirements are
formalized as functions in ACL2. These functions accept audit traces of DRCP nodes
as parameters and verify security-related properties according to current packets and
history information. For instance, the second security property, “No two nodes have
the same IP address,” is formalized as a function that rejects any audit trace
containing two DRCP_OFFER packets with the same IP address. The ACL2 function
is defined as below:

 Formal Reasoning About a Specification-Based Intrusion Detection 29

(defun uniqueoffer (packet historyinfo)
 (if (endp historyinfo)
 t
 (and (uniqueofferrec packet (car (getofferlist historyinfo)))

 //a unique IP address for the current offer
 (uniqueoffer packet (cdr (getofferlist historyinfo)))

// unique IP addresses for all offers)))

The security property, “A node without an IP address will be given one within X
seconds”, is defined as a function that only accepts audit traces that have corresponding
DRCP_OFFERs for each request from a DRCP client within X seconds. Any request
without a corresponding DRCP OFFER will be considered as a starved request.

(defun no_starve_req (packet historyinfo network)
 (if (endp historyinfo)
 t
 (and (no_starve_req_rec packet (car (getreqlist historyinfo)))

//no starved request for current record
 (no_starve_req (cdr (getreqrlist historyinfo))) //no starved request for all

records
)))

5.2 Formalization of Specifications of DRCP

We formally specify the activities of a DRCP server and a client. Our model, codified
in ACL2, is in essence a server and client’s actions expressed as an extended finite
state machines (EFSM) and formalize them using ACL2.

The local behavioral specifications of DRCP protocol are defined as a function
which uses incoming packets and current states as inputs to determine the next state
and outgoing packets. A network buffer stores the packets through the wireless
network. The state transitions are defined as below:

(defun statetransition(currstate inpacket outpacket iplist)
 (cond
 ((and (equal currstate ‘Server_init) (getippool))// get IP Pool from DRCP server
 ‘Listen)
 ((and (equal currstate 'Listen) (equalpackettype inpacket 'Discover)(validip iplist)
 'Reply) //send out an offer if a valid IP is available
 ((and (equal currstate 'Listen) (equalpackettype inpacket 'Discover)(not(validip

iplist)))
 ‘Server_init) // request new IP pool if no valid IP available
…

We now describe how we prove that these formal DRCP local behavioral
specifications imply the global security requirements.

5.3 Verification About Enforcement of Security Requirements

In verification, we try to demonstrate whether the local behavioral specifications are
strong enough to guarantee the security requirements. We have formalized and

30 T. Song et al.

verified a few availability requirements like whether a unique IP will be provided to a
DRCP client in a timely manner, which we say is X seconds. In the verification, we
prove that under certain assumptions, if any audit trail does not violate the local
behavioral specifications of DRCP, these audit trail do not violate the security
requirements either. The theorem is defined as:

(defthm specification-requirement
 (implies
 (and
 (assumptions packetlist) // assumptions A1 to A4
 (spec packetlist network) //local specification for DRCP nodes
)
 (requirement packetlist nil network)// global requirements for DRCP networks
))

Assumptions are made in our verification to cover properties that may not be
monitored by the behavioral IDS specifications. These assumptions include:

A1: a DRCP server always gets a valid IP pool;
A2: a DRCP server only uses each IP address in the IP pool once;
A3: only one DRCP server is in a subnet;
A4: a DRCP server sends out an offer in T1 seconds after receiving a request;

network delay is less than T2; and T1+2*T2 less than X.

These assumptions are important in analyzing the enforcement of security
requirements. They are sufficient but not certainly the weakest possible assumptions;
in our methodology, assumptions can be reviewed and relaxed, if possible to still
carry out the verification. We can use formal reasoning to determine which
assumptions are necessary. For now we ask the reader to accept the reasonableness of
these assumptions.

Some of the assumptions are not always true and may be violated by some unusual
behavior of DRCP nodes. For example, assumption A1 may not hold during the
process in which a DRCP server, which uses up all IP addresses, sends out a request
asking for a new IP pool from a DCDP server. Some of the assumptions can be
removed or weakened by using an improved DRCP specification that can describe the
behavior of DRCP more precisely. These assumptions may also be sources for attacks
when they do not hold. Additional detection rules can be developed to monitor
whether the assumptions are violated. For example, DRCP servers get IP pools from
DCDP servers by sending out DCDP requests. Deploying a monitoring scheme with
proper DCDP specifications will detect the violation of assumption A1.

6 Discussions

Monitoring mechanisms are important for achieving security when a network might
be subject to attacks – that exploit vulnerabilities in the protocol design, or the
protocol implementation, or that arise when a node is under the control of an attacker.
Since we wish to detect unknown attacks, we reject a signature-based approach in
favor of specification-based intrusion detection. In the IDS approach presented in this
paper, we could have assumed that a centralized monitoring scheme is employed to

 Formal Reasoning About a Specification-Based Intrusion Detection 31

collect a complete set of information about the MANET. This centralized approach,
although feasible, scales poorly since every node needs to collect information and
send it to a server for analysis. An alternate mechanism is to employ a cooperative
monitoring approach - IDS monitors at each node make decisions based upon local
information and necessary but limited correlated information from other monitors.
Bandwidth costs as well as processing costs associated with message gathering will
improve as compared with centralized monitoring. Further improvement could be
obtained if a subset of nodes is used for monitoring instead of all the nodes. In [17], it
is observed that all malicious packets can be detected by executing the IDS in only a
small fraction of the nodes (typically less than 15%). For example, a set of nodes, that
represents a minimum vertex cover of an ad hoc network, can be used to monitor all
the traffic in the network. We are pursuing these ideas in our current research.

Our verification methodology makes progress towards the achievement of an
important claim of specification-based intrusion detection: a zero false negative rate
in detecting all attacks that violate the security requirements. Since we have proved
that the specifications can ensure that the security requirements will not be violated, it
is trivial to prove the any violation of the security requirements implies violations of
the specification. This means all attacks that violate the security requirements will be
detected by the specification-based intrusion detection. Another important aspect of
the specification-based approach is a low false positive rate. This aspect is not
addressed in our verification presently, but we believe that determining a near-
minimal rule set that is necessary to carry out the proof is a possible approach. Right
now, the amount of search to determine such a rule set is expensive but we are
considering heuristic search methods to reduce the search.

7 Conclusions and Future Work

We have applied specification-based intrusion detection to detect insider attacks on
DRCP. DRCP is used to automatically configure nodes in a MANET with IP
addresses, and other data, a newly arriving node requires to interface to the network.
It is especially important to secure this protocol since if it is compromised, no IP layer
connectivity can be established or there will be unintended sharing of addresses.

We defined global security requirements and created rules that characterize a
specification-based intrusion detection system that enforces these global
requirements, i.e., detect activity that could cause the security requirements to be
violated. Local behavioral specifications are developed to define normal behavior
of DRCP. In our results, we have proved that the local behavioral specifications of
DRCP can ensure that the global security requirements will hold. Any violation
of global security requirements will result in a violation of local specifications and
raise an alert. We claim that the intrusion detection system is efficient (because it
monitors behavior of individual nodes), has no false negatives (with respect to the
global requirements we defined).

Future work includes improving the formal specifications of DRCP as the basis for
arguing that the IDS issues few (hopefully no) false positives, reasoning about other
wireless protocols like OLSR and simulating the specification-based intrusion detection
on a test bed as a way to validate our proof and our claim about IDS overhead.

32 T. Song et al.

References

[1] J. P. Anderson, "Computer security threat monitoring and surveilance," Technical report,
James P. Anderson Co., Fort Washington, PA, April 1980.

[2] Matthew A. Bishop, Computer Security: Art and Science, Addison Wesley Longman,
2002.

[3] S. Budkowski and P. Dembinski, “An Introduction to Estelle: A specification language
for distributed systems,” Computer Networks and ISDN Systems, vol. 14, no. 1, pp.
3--24, 1991.

[4] Bishop Brock, Matt Kaufmann and J Moore,"ACL2 Theorems about Commercial
Microprocessors," in proceedings of Formal Methods in Computer-Aided Design
(FMCAD'96), Springer-Verlag, pp. 275-293, 1996

[5] R. S. Boyer and J S. Moore, A computational logic, Academic Press, New York, 1979.
[6] Yian Huang and Wenke Lee, "Attack Analysis and Detection for Ad Hoc Routing

Protocols," in proceedings of The 7th International Symposium on Recent Advances in
Intrusion Detection (RAID 2004), Sophia Antipolis, France, September 2004

[7] K. Ilgun, R. Kemmerer, and P. Porras , “State Transition Analysis: A Rule-based
Intrusion Detection Approach”, In IEEE Transactions of Software Engineering,
2(13):181-199, March 1995.

[8] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, “Computer-Aided
Reasoning: An Approach”, Kluwer Academic Publishers, June, 2000

[9] C. Ko, J. Rowe, P. Brutch, K. Levitt, ”System Health and Intrusion Monitoring Using a
hierarchy of Constraints”, In Proceedings of the 4th International Symposium on Recent
Advances in Intrusion Detection (RAID), 2001.

[10] C. Ko, M. Ruschitzka and K. Levitt, “Execution Monitoring of Security-Critical
Programs in Distributed Systems: A Specification-based Approach,” In Proceedings of
the 1997 IEEE Symposium on Security and Privacy, May 1997.

[11] A. J. McAuley, K. Manousakis, “Self-Configuring Networks”, IEEE Milcom 2000, Los
Angeles, October 2000.

[12] J Moore,"Proving Theorems about Java-like Byte Code," in Correct System Design -
Issues, Methods and Perspectives, 1999.

[13] M. Roesch, ”Snort: Lightweight Intrusion Detection for Networks”, Proc. Of USENIX
LISA ’99, Seattle, Washington, November 1999, pp. 229-238.

[14] Tao Song, Jim Alves-Foss, Calvin Ko, Cui Zhang, Karl Levitt, “Using ACL2 to Verify
Security Properties of Specification-based Intrusion Detection Systems,” In Proceedings
of the Fourth International Workshop on the ACL2 Theorem Prover and Its Applications,
2003.

[15] D. Sterne, P. Balasubramanyam, D. Carman, B. Wilson, R. Talpade, C. Ko, R. Balupari,
C-Y. Tseng, T. Bowen, K. Levitt and J. Rowe, "A General Cooperative Intrusion
Detection Architecture for MANETs," In Proceedings of the 3rd IEEE International
Workshop on Information Assurance, March 2005

[16] Tao Song, Calvin Ko, Jim Alves-Foss, Cui Zhang and Karl Levitt, “Formal Reasoning
about Intrusion Detection Systems,” In Proceedings of the 7th International Symposium
on Recent Advances in Intrusion Detection (RAID), 2004.

[17] Dhanant Subhadrabandhu, Saswati Sarkar, and Farooq Anjum, “Efficacy of Misuse
Detection in Adhoc Networks, ” In proceeding of IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks, 2004.

 Formal Reasoning About a Specification-Based Intrusion Detection 33

[18] C.Y. Tseng, P. Balasubramanyam, C. Ko, R. Limprasittiporn, J. Rowe, K. Levitt, "A
Specification-Based Instrusion Detection system for AODV," 2003 ACM Workshop on
security of Ad Hoc and Sensor Networks (SASN '03), October 21, 2003.

[19] Chinyang Henry Tseng, Tao Song, Poornima Balasubramanyam, Calvin Ko, Karl Levitt,
"A Specification-based Intrusion Detection Model for OLSR," submited to International
Symposium on Recent Advances in Intrusion Detection (RAID), 2005

[20] Ravi Vaidyanathan, Latha Kant, Anthony McAuley, Michael Bereschinsky,
“Performance Modeling and Simulation of Dynamic and Rapid Auto-configuration
Protocols for Ad-hoc Wireless Networks,” in proceeding of Annual Simulation
Symposium 2003.

[21] Lidong Zhou and Zygmunt J. Haas. Securing ad hoc networks. IEEE Network Magazine,
13(6), November/ December 1999.

A Formal Approach for Reasoning About
a Class of Diffie-Hellman Protocols

Rob Delicata and Steve Schneider

Department of Computing, University of Surrey, Guildford, GU2 7XH, UK
{R.Delicata, S.Schneider}@surrey.ac.uk

Abstract. We present a framework for reasoning about secrecy in a
class of Diffie-Hellman protocols. The technique, which shares a concep-
tual origin with the idea of a rank function, uses the notion of a message-
template to determine whether a given value is generable by an intruder
in a protocol model. Traditionally, the rich algebraic structure of Diffie-
Hellman messages has made it difficult to reason about such protocols
using formal, rather than complexity-theoretic, techniques. We describe
the approach in the context of the MTI A(0) protocol, and derive the
conditions under which this protocol can be considered secure.

1 Introduction

Formal protocol analysis techniques have a simplicity which is due, in part, to the
high level of abstraction at which they operate. Such abstractions are justified
since any attack discovered at the abstract level will tend to be preserved in a
more concrete model. In general, however, failure to discover an attack does not
imply correctness, and in seeking to establish correctness we must be mindful of
the assumptions on which our abstractions are based.

Protocols based on the Diffie-Hellman scheme [DH76] present an interesting
verification challenge since, in this context, we cannot assume such an abstract
view of cryptography. Certain algebraic properties (such as the homomorphism of
exponentiation in (gx)y = (gy)x) must be represented for the protocol to reach its
functional goal, and other properties (such as the cancellation of multiplicative
inverses) must also be considered if we wish to prove a meaningful security result.
As a consequence, such protocols have tended to be evaluated in complexity-
theoretic models (see [BCP01], for example) which aim to reduce the correctness
of the protocol to some well-defined hard problem, such as the computation of
discrete logarithms in a finite field. The resulting proofs tend to be difficult to
conduct and evaluate, and a small change in the protocol will often require an
entirely new proof to be constructed.

With some exceptions [Mea00, PQ01, AC04] formal techniques have been slow
in rising to the challenge of Diffie-Hellman. This paper presents a theorem-
proving approach to the verification of a class of Diffie-Hellman protocols. Al-
though our approach is quite general we present it in the context of the MTI A(0)
protocol of Matsumoto, Takashima and Imai [MTI86]. This protocol is chosen for

T. Dimitrakos et al. (Eds.): FAST 2005, LNCS 3866, pp. 34–46, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Formal Approach for Reasoning About a Class of Diffie-Hellman Protocols 35

the simplicity of its messages and non-standard use of Diffie-Hellman (in particu-
lar, the computation of a shared key as gx·gy = gx+y). Some of the MTI protocols
satisfy an interesting property—which we call I/O-independence—that enables
us to model the protocols at a very abstract level. The protocols and the concept
of I/O-independence are described in Section 2. Our model revolves around the
idea of a message-template which, suitably instantiated, can represent any value
that an intruder can deduce (under a defined set of capabilities). A particular
value remains secret if it cannot be realised via any instantiation of the message-
template. This model, and its associated definition of secrecy, is described in
Section 3 and applied to the MTI A(0) protocol in Section 4. Although we do
not describe it in such language, our approach shares a conceptual origin with the
notion of a rank function [Sch97], and is informed by the approach of Pereira and
Quisquater [PQ01]; we explore these relationships, and conclude, in Section 5.

2 The MTI Protocols

Three infinite classes of authenticated key agreement protocols fall under the ban-
ner of MTI [MTI86]. All of the MTI protocols appear amenable to analysis in our
framework but, in this paper, we focus on one particular protocol, A(0). The pro-
tocol combines long-term and ephemeral key contributions to provide authenti-
cation in the Diffie-Hellman scheme. A summary of notation, following [BM03],
is given in Figure 1. In protocol A(0) (Figure 2) principal A (who wishes to es-
tablish a shared-secret with B) generates a long-term secret, xA, and publishes
the corresponding public-key yA = gxA . B does the same with xB and yB. A
randomly chooses rA, computes zA = grA and sends it to B. In response, B ran-
domly chooses rB, computes zB = grB and sends it to A. B then computes ZAB =
zxB

A yrB

A = (grA)xB · (gxA)rB = grAxB+xArB and A computes ZAB = grBxA+xBrA .

rA, rB, rC Random integers, chosen by A, B and C respectively
tA, tB Ephemeral public-keys, tA = grA , tB = grB

xA, xB , xC Private long-term keys of A, B and C respectively
yA, yB Public keys of A and B: yA = gxA , yB = gxB

ZAB The shared secret between A and B
x ∈R X An element x chosen at random from the set X

Fig. 1. Protocol notation

A B

rA ∈R Zq

zA = grA
zA−−−−→ rB ∈R Zq

zB = grB

ZAB = zxA
B yrA

B

zB←−−−− ZAB = zxB
A yrB

A

Fig. 2. MTI A(0) protocol

36 R. Delicata and S. Schneider

The protocol aims to convince each principal that no one, aside from the other pro-
tocol participant, can learn the shared-secret ZAB. This property is often termed
implicit key authentication; here we simply refer to it as secrecy.

All of the MTI protocols involve the exchange of two messages, zA and zB,
each of which is computed within the principal and not as a function of a pre-
viously received message. (Contrast this with protocols like Cliques, where a
principal B may receive an input m from A, apply some function to m and send
the result on to C.) We capture this notion in the property of Input/Output-
independence:

Definition 1. In a Diffie-Hellman protocol a principal P is I/O-independent if
P does not transmit any message which is dependent on the value of a previously
received message.

We say that a protocol is I/O-independent if every honest principal is I/O-
independent.

Proposition 1. Protocol A(0) is I/O-independent.

We will see in the next section that the property of I/O-independence enables
us to model protocols at a very abstract level.

3 A Model for I/O-Independent Diffie-Hellman Protocols

In this section we present a model for I/O-independent protocols based around
the idea of a message-template which defines the general form of any message
generable by an intruder in a given protocol.

We begin by noting that transmitted messages are elements of some group
G in which the Decisional Diffie-Hellman problem is believed to be hard. A
generator g of G is agreed by all principals and there exists an identity element
1 such that 1 · x = 1, for all x ∈ G. We assume that elements of G can be
expressed as g raised to the power of a sum of products of random numbers.
This assumption permits, for example, gxy+z, where x, y and z are random
numbers, but excludes values such as g(gx) since the exponent is itself a group
element. The users of the system therefore manipulate two types of element,
(i) random exponents, and (ii) powers of g, and we assume that only the latter
will be sent on the network.

3.1 The Intruder

We divide the users of the system into a set of honest principals, {A, B}, who
will always adhere to the protocol, and a malevolent intruder, C, whose goal is
to subvert the protocol.

Some elements of (i) (from above) will be known initially to the intruder (such
as random numbers he has chosen himself), and some elements of (ii) will become
known to the intruder during the course of the protocol. The I/O-independent
nature of the protocols means that an active intruder cannot influence any of

A Formal Approach for Reasoning About a Class of Diffie-Hellman Protocols 37

the values sent by honest participants, since the functions which produce these
values are not dependent on any external input. This is important, since it is
then sufficient to assume that the intruder knows these values from the start.

Following [PQ01], we divide the intruder’s initial knowledge into a set E of
exponents and a set P of known powers of g, where x ∈ P indicates knowledge
of gx but not of x (unless x ∈ E). We then define the computations that the
intruder can perform.

Definition 2 (intruder capabilities). Given a set P of initially known powers
of g and a set E of initially known exponents, the intruder can grow P based on
the following operations:
1. given m1 ∈ P and m2 ∈ P add m1 + m2 to P
2. given m ∈ P and n ∈ E add mn, m(n−1) to P
3. given m ∈ P add −m to P

In other words, we allow the intruder to (1) compute gm1 · gm1 = gm1+m2 given
knowledge of gm1 and gm2 , (2) compute the exponentiations (gm)n, (gm)n−1

given knowledge of gm and n, and (3) compute the inverse 1
gm = g−m given gm.

Moreover, these capabilities can be combined:

Example 1. Suppose that P = {1, rA} and E = {rC}. The intruder can deduce
(i) −rA ∈ P by rule 3 from rA, (ii) 1rC ∈ P by rule 2 and −rA + 1rC ∈ P by
rule 1 from (i) and (ii), representing the computation of grC−rA .

Crucially, the intruder is not able to use m1 ∈ P and m2 ∈ P to deduce
m1m2. �

In this model, the intruder’s entire knowledge can be defined as the closure of
P under the deductions of Definition 2 and set E. In any useful protocol, E and
P will initially be non-empty, and the resulting knowledge sets will be infinite.
For this reason, it will be infeasible to enumerate these sets by growing P via
successive application of rules 1–3.

3.2 System Definition

An examination of the sorts of values that can be deduced by an intruder leads
to the following observation: a generable value can be written as some number of
elements of P multiplied by some product of (possibly inverted) elements from
E. For instance, the value derived in Example 1 can be written as −1(rA)(r0

C)+
1(1)(r1

C) (noting the difference between the group identity 1 and the integer 1).
In fact, we can go further by defining a polynomial over the variables of E and
P which represents any value generable by the intruder using rules 1–3, above.

Definition 3. Let F be a finite family of functions that map elements of E to
integer powers: F ⊆fin E → Z.

Given E = {xC}, for example, we may define F = {{xC �→ −1}}.

Definition 4. Let h be a higher-order function which, for a member of F , maps
elements of P to integers:h : F → (P → Z).

38 R. Delicata and S. Schneider

As an example, given P = {rA} and F = {{xC �→ −1}}, we might choose to
define h({xC �→ −1}) = {rA �→ 1}.

Definition 5 (message-template). Fix some E and P . Then:

v(F, h) =
∑
f∈F

⎛⎝∑
p∈P

hf,p · p

⎞⎠(∏
e∈E

efe

)

We call v the message-template for a system defined by E and P . Intuition is
little help here, so consider a simple example:

Example 2. Given the system defined by P = {rA} and E = {xC}, consider
how the value g−rAx−1

C +5rAxC can be expressed. P and E result in the following
polynomial:

v(F, h) =
∑
f∈F

(
hf,rA · x

fxC

C

)
To express a particular generable value we must define F and h. Recall that F
is a family of functions. Suppose that F = {{xC �→ −1}, {xC �→ 0}, {xC �→ 1}},
then we have:

v(F, h) = (h{xC �→−1},rA
· x−1

C) + (h{xC �→0},rA
· x0

C) + (h{xC �→1},rA
· x1

C)

Finally, suppose that h is defined such that h({xC �→ −1}) = {rA �→ 1},
h({xC �→ 0}) = {rA �→ 0} and h({xC �→ 1}) = {rA �→ 5}. This results in:

v(F, h) = (−1 · rA) · (x−1
C) + (0 · rA) · (x0

C) + (5 · rA)(x1
C)

which is the value −rAx−1
C + 5rAxC . �

As a more complex example, consider the following:

Example 3. Let P = {1, rA, rB}, E = {xC , rC}. Then:

v(F, h) =
∑
f∈F

(hf,1 · 1 + hf,rA · rA + hf,rB · rB)
(
x

fXC

C · rfrC

C

)
In this polynomial, the value grC−rA from Example 1 can be represented by
defining:

F = {{xC �→ 0, rC �→ 0}, {xC �→ 0, rC �→ 1}}

and h such that:

h({xC �→ 0, rC �→ 0}) = {1 �→ 0, rA �→ −1, rB �→ 0}
h({xC �→ 0, rC �→ 1}) = {1 �→ 1, rA �→ 0, rB �→ 0}

We then obtain: v(F, h) = (0 · 1 +−1 · rA + 0 · rB)(x0
C · r0

C) + (1 · 1 + 0 · rA + 0 ·
rB)(x0

C · r1
C) = −rA + rC . �

A Formal Approach for Reasoning About a Class of Diffie-Hellman Protocols 39

As stated, our intention is that, for a given system (defined by E and P), the
polynomial v(F, h) expresses the general form of all values deducible by an in-
truder, from P and E, by appeal to the deduction rules of Definition 2. We embed
the ability of a polynomial to take a certain value in the concept of realisability:

Definition 6. A value m is realisable (written realisable(m)) if there exists
functions F and h such that v(F, h) = m.

That is, a value m is realisable if there exists a solution to the equation v(F, h)− m
= 0. If m is not realisable we write ¬realisable(m). Define Pub to be a closure
containing all possible polynomials for a given system. Pub is the set containing
all realisable values of that system: the set of public messages.

Theorem 1 (Faithfulness). Fix some P and E and Pub as defined above.
Pub is closed under the deductions of Definition 2.

Proof. By induction. For the base case we show that, whenever p ∈ P , p is
realisable.

Base case: Given some p ∈ P , p is realisable with v(F, h) by defining

F = {{e �→ 0 | e ∈ E}}
and:

h({e �→ 0 | e ∈ E}) = {p �→ 1} ∪ {q �→ 0 | q ∈ P \ {p}}
Inductive step: There are three cases, corresponding to the three intruder

deduction rules: (i) realisable(m1) ∧ realisable(m2) =⇒ realisable(m1 + m2),
(ii) realisable(m1)∧n ∈ E =⇒ realisable(m1n)∧ realisable(m1n

−1), and (iii)
realisable(m1) =⇒ realisable(−m1).

(i) Assume m1 = v(F1, h1) and m2 = v(F2, h2). Then m1 + m2 is realisable
with v(F3, h3) by defining F3 = F1 ∪ F2 and h such that:

h3(f) =

⎧⎪⎨⎪⎩
h1(f) if f ∈ dom(h1) \ dom(h2)
h2(f) if f ∈ dom(h2) \ dom(h1)
λp.h1(f)(p) + h2(f)(p) if f ∈ dom(h1) ∩ dom(h2)

(ii) For the first conjunct assume m1 = v(F1, h1) and n ∈ E. Then, m1n is
realisable with v(F2, h2) by defining:

F2 = {f ⊕ {n �→ (F1(n) + 1)} | f ∈ F1}

and h2 such that:

h2(f) = h1(f ⊕ {n �→ (f(n)− 1)})

The second conjunct follows the above, with addition in place of the subtraction
in the definition of h2.

(iii) Assume m1 = v(F1, h1). Then −m1 is realisable with v(F1, h2) where h2
is defined such that h2(f)(p) = −(h1(f)(p)). �

40 R. Delicata and S. Schneider

Our intention is for the model to respect the fact that some values are impossible
for an intruder to guess. We achieve this by assuming that the variables (rA, xC

etc.) are symbolic, that each is distinct from all others, and that the set of
variables is disjoint from the set of integers.

Assumption 1. (P ∪E) ∩ Z = ∅

The following example makes clear why this restriction is necessary:

Example 4. Consider the system defined by P = {1} andE = {xC}. If variables
are numbers, then any group value gX can be realised by defining X = v(F, h),
where F = {{xC �→ 0}} and h({xC �→ 0}) = {1 �→ X}, yielding v(F, h) =
(1 ·X)x0

C = X . �

Assumption 1 means that, for the group identity 1, we have that 1 /∈ Z and, in
particular, 1 = 1. However, we grant special privileges to the group identity such
that 1 · m = m, for all m. Note that an element n ∈ E \ P will typically only
be realisable if 1 ∈ P . That is, n is realisable by v(F, h), where F = {{n �→ 1}}
and h({n �→ 1}) = {1 �→ 1}, giving 1 · (1 · n1) = n.

Condition 1. 1 ∈ P =⇒ P ∩ E = ∅

We require that the above condition be true of any protocol model. To see
why this is necessary consider the system given by E = {xC}, P = {1, xC}.
The value xC can be realised in two ways, xC = v(F, h1) = v(F, h2), where
F = {{xC �→ 0}, {xC �→ 1}}, and h1, h2 are defined such that:

– h1({xC �→ 0}) = {1 �→ 0, xC �→ 1}, h1({xC �→ 1}) = {1 �→ 0, xC �→ 0}
– h2({xC �→ 0}) = {1 �→ 0, xC �→ 0}, h2({xC �→ 1}) = {1 �→ 1, xC �→ 0}

The first case yields v(F, h1) = (xC)x0
C + (0)x1

C = xC and the second results
in v(F, h2) = (0)x0

C + (1)x1
C = xC . Since h1 = h2, but v(F, h1) = v(F, h2), the

example allows the same value to be derived in two separate ways.

3.3 Secrecy

In a Diffie-Hellman protocol, a principal u performs some key computation func-
tion on an input z to derive a secret Zuv believed to be shared with v. We denote
this function kuv with Zuv = kuv(z).

Example 5. In the standard Diffie-Hellman protocol [DH76], a principal A, ap-
parently running with B and using the ephemeral secret xA performs the key
computation kAB(z) = zxArepresenting the shared secret ZAB = gzxA . �

Definition 7 (Secrecy). Given a system defined by E and P , a key computa-
tion function k maintains secrecy iff:

∀m.realisable(m) =⇒ ¬realisable(k(m))

A Formal Approach for Reasoning About a Class of Diffie-Hellman Protocols 41

Intuitively, secrecy is defined as an anti-closure property of the set of generable
values: the result of applying k to a realisable value should never result in a
realisable value. If this property does not hold then an intruder will possess two
values, x and y, such that, if x is sent to some principal she will compute y,
wrongly believing it to be secret.

4 Reasoning About the MTI A(0) Protocol

A complete model of an I/O-independent protocol is a combination of the
message-template with an appropriate key computation function. In this sec-
tion we present a model of the MTI A(0) protocol and use it to deduce the
conditions under which the protocol guarantees the secrecy of a shared key.

Define EA(0) = {rC , xC}, PA(0) = {1, rA, rB , xA, xB}, representing a run of
the MTI A(0) protocol. We wish to show that the key computation function
k

A(0)
ab (z) = zxa + xbra maintains secrecy. There are eight cases to consider:

1. a = A ∧ b = C 5. a = A ∧ b = A
2. a = B ∧ b = C 6. a = B ∧ b = B
3. a = C ∧ b = A 7. a = A ∧ b = B
4. a = C ∧ b = B 8. a = B ∧ b = A

We treat each in turn.

Cases 1–4

Let a = A and b = C. We are trying to show that, for any z where realisable(z),
¬realisable(kA(0)

AC (z)). There exists some F1 and h1 such that v(F1, h1) = z. If
we can find some F2 and h2 such that v(F2, h2) = k

A(0)
AC (z) we will have shown

that k
A(0)
AC (z) is realisable and is therefore, not secret.

Note that k
A(0)
AC (z) = zxA +xCrA is a linear combination, and that the linear

combination will be realisable if each of its components is realisable. In general
zxA will be realisable if z does not mention xA (since xA ∈ P but xA /∈ E).
Consider, then, z = rC , given by v(F1, h1) where:

F1 = {{rC �→ 1}}
h1({rC �→ 1}) = {1 �→ 1} ∪ {p �→ 0 | p ∈ P \ {1}}

then zxA = rCxA is realisable by v(F1, h3) where h3({rC �→ 1}) = {xA �→ 1}.
Similarly, xCrA is realisable by v(F3, h4), where:

F3 = {{xC �→ 1}}
h4({xC �→ 1}) = {rA �→ 1} ∪ {p �→ 0 | p ∈ P \ {rA}}

Theorem 1 then tells us that, since realisable(rCxA) and realisable(xCrA), the
sum rCxA + xCrA is also realisable, and is given by v(F2, h2), where:

F2 = F1 ∪ F3 = {{rC �→ 1}, {xC �→ 1}}
h2({rC �→ 1}) = {xA �→ 1} ∪ {p �→ 0 | p ∈ P \ {xA}}
h2({xC �→ 1}) = {rA �→ 1} ∪ {p �→ 0 | p ∈ P \ {rA}}

42 R. Delicata and S. Schneider

From this we conclude that the intruder can deduce a pair of values, rC and
rCxA + xCrA, related by the key computation function k

A(0)
AC , and so secrecy

fails. This failure should come as no surprise since b = C represents the intruder’s
legitimate participation in the protocol. Any honest principal who willingly en-
gages in a protocol run with the intruder cannot hope to maintain secrecy of
the resulting session-key. We note that similar conclusions can be reached in
cases 2–4.

Cases 5 and 6 (b = a)

Let a = A, b = A. The corresponding key computation is given by k
A(0)
AA (z) =

zxA + xArA. Note that xArA is the multiplication of two elements from P . The
intruder model only allows the addition of elements from P and, since xA /∈ E
and rA /∈ E, the component xArA is unrealisable. Consequently, for zxA +xArA

to be realisable, zxA must be a linear combination that includes −xArA (since
−xArA + xArA = 0 is realisable). Consider the simplest case, where z = −rA,
which is realisable, since rA ∈ P . The result of k

A(0)
AA (−rA) = −rAxA +xArA = 0

is realisable by v(F5, h5), where, for instance:

F5 = {{rC �→ 0}, {xC �→ 0}}
h5({rC �→ 0}) = {p �→ 0 | p ∈ P}
h5({rC �→ 0}) = {p �→ 0 | p ∈ P}

As a result, the intruder can deduce a pair of values −rA and 0 such that
0 = k

A(0)
AA (−rA) and, again, secrecy fails. A similar result holds for case 6, where

a = b = B. This attack is a simpler version of one discovered by Just and
Vaudenay [JV96] and described by Boyd and Mathuria [BM03]. In the original
attack, z was set to be rC − rA and the resulting session-key computed as gxArC

(where xArC is realisable). The attack depends on the willingness of A to engage
in the protocol with someone claiming her identity, and can be seen as stipulating
a condition on an implementation: namely, that a principal should only engage
in the protocol if the other party has a distinct identity.

Cases 7 and 8 (b �= a)

For the final cases, assume a = A and b = B (a similar result holds for a = B

and b = A). The key computation is given by k
A(0)
AB (z) = zxA+xBrA. For secrecy

to fail there must exist some z = v(F1, h1) and k
A(0)
AB (z) = v(F2, h2) such that:

v(F1, h1) · xA + xBrA = v(F2, h2)

Consider the coefficient of x0
Cr0

C . We have:

h2({xC �→ 0, rC �→ 0}) = {1 �→ n1, rA �→ n2, rB �→ n3, xA �→ n4, xB �→ n5}
h1({xC �→ 0, rC �→ 0}) = {1 �→ m1, rA �→ m2, rB �→ m3, xA �→ m4, xB �→ m5}

for some m1 . . . m5 ∈ Z, n1 . . . n5 ∈ Z where the coefficients on both sides are
the same:

A Formal Approach for Reasoning About a Class of Diffie-Hellman Protocols 43

m1xA + m2rAxA + m3rBxA + m4x
2
A + m5xBxA + xBrA

=
n1 + n2rA + n3rB + n4xA + n5xB

By assumption we have that variables are symbolic and that a given symbol x
is distinct from all others. Specifically, we note that xBrA is distinct from all
other terms on either side of the equation and, therefore, there are no values of
the coefficients which enable the equality to be met. We conclude that, for any
realisable z, k

A(0)
AB (z) is unrealisable.

Results

The analysis enables us to state the following result:

Theorem 2. Given EA(0) = {rC , xC}, PA(0) = {1, rA, rB , xA, xB},

a = C∧b = C∧a = b =⇒ k
A(0)
ab maintains secrecy �

This tells us that protocol A(0) maintains the secrecy of the session-key precisely
when the initiator and responder are distinct entities and neither of them is the
intruder C.

5 Discussion

5.1 The Link with Rank Functions

Although we have not described our approach in such terms, it shares a con-
ceptual origin with the notion of a rank function. In the context of protocol
verification, a rank function describes an invariant property of a system [Sch97].
This property will define the sorts of messages that may pass through the sys-
tem, crucially distinguishing certain values that should remain secret. The rank
function effectively partitions the message-space of a protocol by assigning a
rank of pub to public and sec to secret messages. Traditionally a rank function
is defined over the message-space of a protocol model expressed in the process
algebra CSP [Sch00], and a central rank theorem gives a series of proof obliga-
tions on the rank function whose achievement allows us to conclude that only
messages of rank pub ever appear on the network. Previous work has applied
the rank function approach in the context of Diffie-Hellman protocols [DS05].
However, a fundamental difficulty with this approach is the necessity to stati-
cally assign a rank to messages. It is interesting to note that the present work
side-steps this issue by defining (via the message-template) the set Pub of public
messages. This set corresponds to the set of messages assigned a rank of pub by
the rank approach.1

1 In fact, Pub is similar to Heather’s concept of a minimal rank function [Hea01].

44 R. Delicata and S. Schneider

5.2 Pereira and Quisquater’s Approach

Recently, Pereira and Quisquater [PQ01] developed a formal model of the Cliques
conference key agreement protocols [AST00], based on linear logic, and discov-
ered attacks on each of the claimed security properties. In the model, secrecy is
defined as the inability of an intruder to discover a pair of values (gx, gy) such
that, if a principal is sent gx, he will compute the key gy. Values are assumed
to take the form of g raised to a product of exponents, and secrecy becomes
the inability of an intruder to learn a pair of messages separated by the ratio
y
x . The model allows the intruder to grow a set of known ratios, in the hope
that some secret ratio(s) remain unobtainable. This ratio-centric view of secrecy
seems particularly natural for Diffie-Hellman exchanges, and our initial attempts
at modelling the MTI protocols sought to embrace this approach. However, it
turns out that this view of secrecy does not generalise in the obvious way. Con-
sider, for example, a value z in the A(0) protocol, and the key computation
function k

A(0)
ab (z) = zxa + xbra. The ratio between k

A(0)
ab (z) and z (xa + xbra

z)
is still in terms of z, due to the presence of addition in the exponents. This
fact makes it difficult to derive the set of secret ratios, since a ratio cannot be
stated without recourse to the argument to the key computation function. The
present work can be viewed as an attempt to provide a more general view of
Diffie-Hellman key computation.

In a different respect, Pereira’s and Quisquater’s model is more general than
ours, since it applies to protocols which fail to satisfy the property of I/O-indepen-
dence. This property, recall, tells us that no user of the protocol ever sends out
any message which is dependent on a previously received message. In the Cliques
protocols, protocol participants tend to receive a message, perform some compu-
tation on that message and send out the result. Pereira and Quisquater call such
user operations services.2 These services are encoded in terms of the values added
to the exponent of an incoming message. For instance, a principal may receive a
message gx and generate and send the message gxyz (where y and z are known to
that principal). The intruder can then (with some restrictions) use the principal as
an oracle, enabling him to send a spurious message gc and receive gcyz in return.
The fact that the property of I/O-independence does not allow such services to be
expressed in our model is not a fundamental limitation but a restriction which en-
ables us to describe our work in a clean manner. One could envisage weakening this
assumption by internalising such services in the intruder (in the style of Broadfoot
and Roscoe[BR02]) where, for example, the multiplication of a value with yz is en-
coded as an additional intruder deduction. The message-templatewould need to be
redesigned to account for these additional capabilities. In contrast to the present
work, such a message-template would tend to be protocol specific.

5.3 Conclusion and Further Work

We have presented a framework for reasoning about secrecy in a class of Diffie-
Hellman protocols, and demonstrated the approach by a consideration of
2 In these terms, a principal is I/O-independent if it provides no services.

A Formal Approach for Reasoning About a Class of Diffie-Hellman Protocols 45

secrecy in the MTI A(0) protocol. The work hinges around the idea of a message-
template, an object which defines, in a highly abstract way, the values that can
be deduced by an intruder under a given set of capabilities. A protocol model
is given as a combination of a message-template and a function representing the
key computation applied by a principal to derive a shared secret.

This work is nascent, but we are currently applying it to other protocols,
both within and without the MTI suite. This requires us to relax the condi-
tion of I/O-independence and widen our model to address situations in which
protocol participants provide services. In many cases, this extension appears
straightforward. The ad hoc nature of the secrecy proof in Section 4 is unfor-
tunate, and it would be useful to derive a general framework for such proof (as
is achieved in [PQ01], for instance). There also appears to be interesting links
between the idea of a message-template and the concept of ideal used within
the strand space approach [THG99]. Future work will investigate whether this
correspondence enables us to deduce general principles with which a protocol
can be proven correct.

Acknowledgements

Thanks to David Pitt, Joshua Guttman and James Heather for interesting dis-
cussions on this work and to the anonymous referees for their careful reviewing.

References

[AC04] Mart́ın Abadi and Véronique Cortier. Deciding knowledge in security pro-
tocols under equational theories. In 31st International Colloquium on Au-
tomata, Languages and Programming: ICALP’04, volume 3142 of Lecture
Notes in Computer Science. Springer-Verlag, 2004.

[AST00] Giuseppe Ateniese, Michael Steiner, and Gene Tsudik. Authenticated group
key agreement and friends. In Proceedings of the 5th ACM Conference on
Computer and Communication Security. ACM Press, 2000.

[BCP01] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Provably
authenticated group Diffie-Hellman key exchange — the dynamic case. In
Advances in Cryptology: Proceedings of ASIACRYPT ’01, volume 2248 of
Lecture Notes in Computer Science. Springer-Verlag, 2001.

[BM03] Colin Boyd and Anish Mathuria. Protocols for Authentication and Key
Establishment. Springer-Verlag, 2003.

[BR02] Philippa Broadfoot and A. W. Roscoe. Internalising agents in CSP protocol
models. In Workshop on Issues in the Theory of Security: WITS ’02, 2002.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, IT-22(6), 1976.

[DS05] Rob Delicata and Steve Schneider. Temporal rank functions for forward se-
crecy. In Proceedings of the 18th Computer Security Foundations Workshop:
CSFW-18. IEEE Computer Society Press, 2005.

[Hea01] James Heather. ‘Oh! ... Is it really you?’ using rank functions to verify au-
thentication protocols. Ph.D Thesis, Royal Holloway, University of London,
2001.

46 R. Delicata and S. Schneider

[JV96] Mike Just and Serge Vaudenay. Authenticated multi-party key agreement.
In Advances in Cryptology: Proceedings of ASIACRYPT ’96, volume 1163
of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[Mea00] Catherine Meadows. Extending formal cryptographic protocol analysis tech-
niques for group protocols and low-level cryptographic primitives. In Work-
shop on Issues in the Theory of Security: WITS ’00, 2000.

[MTI86] Tsutomu Matsumoto, Youichi Takashima, and Hideki Imai. On seeking
smart public-key-distribution systems. Transactions of the IECE of Japan,
E69(2), 1986.

[PQ01] Olivier Pereira and Jean-Jacques Quisquater. Security analysis of the
Cliques protocols suites. In Proceedings of the 14th IEEE Computer Se-
curity Foundations Workshop: CSFW-14. IEEE Computer Society Press,
2001.

[Sch97] Steve Schneider. Verifying authentication protocols with CSP. In Pro-
ceedings of The 10th Computer Security Foundations Workshop: CSFW-10.
IEEE Computer Society Press, 1997.

[Sch00] Steve Schneider. Concurrent and Real-time Systems: The CSP Approach.
John Wiley and Sons, Ltd, 2000.

[THG99] F. Javier Thayer Fábrega, Jonathan Herzog, and Joshua Guttman. Strand
spaces: Proving security protocols correct. Journal of Computer Security,
7(2/3), 1999.

Eliminating Implicit Information Leaks by
Transformational Typing and Unification

Boris Köpf1 and Heiko Mantel2,�

1 Information Security, ETH Zürich, Switzerland
boris.koepf@inf.ethz.ch

2 Department of Computer Science, RWTH Aachen University, Germany
mantel@cs.rwth-aachen.de

Abstract. Before starting the security analysis of an existing system,
the most likely outcome is often already clear, namely that the system is
not entirely secure. Modifying a program such that it passes the analysis
is a difficult problem and usually left entirely to the programmer. In this
article, we show that and how unification can be used to compute such
program transformations. This opens a new perspective on the problem
of correcting insecure programs. We demonstrate that integrating our
approach into an existing transforming type system can also improve
the precision of the analysis and the quality of the resulting programs.

1 Introduction

Security requirements like confidentiality or integrity can often be adequately
expressed by restrictions on the permitted flow of information. This approach
goes beyond access control models in that it controls not only the access to data,
but also how data is propagated within a program after a legitimate access.

Security type systems provide a basis for automating the information flow
analysis of concrete programs [SM03]. If type checking succeeds then a program
has secure information flow. If type checking fails then the program might be
insecure and should not be run. After a failed type check, the task of correct-
ing the program is often left to the programmer. Given the significance of the
problem, it would be very desirable to have automated tools that better support
the programmer in this task. For the future, we envision a framework for the
information flow analysis that, firstly, gives more constructive advice on how a
given program could be improved and, secondly, in some cases automatically
corrects the program, or parts thereof, without any need for interaction by the
programmer. The current article focuses on the second of these two aspects.

Obviously, one cannot allow an automatic transformation to modify pro-
grams in completely arbitrary ways as the transformed program should resemble
the original program in some well-defined way. Such constraints can be cap-
tured by defining an equivalence relation on programs and demanding that the
transformed program is equivalent to the original program under this relation.
� The author gratefully acknowledges support by the DFG and the ETH Zürich.

T. Dimitrakos et al. (Eds.): FAST 2005, LNCS 3866, pp. 47–62, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

48 B. Köpf and H. Mantel

A second equivalence relation can be used to capture the objective of a transfor-
mation. The problem of removing implicit information leaks from a program can
be viewed as the problem of making alternative execution paths observationally
equivalent. For instance, if the guard of a conditional depends on a secret then
the two branches must be observationally equivalent because, otherwise, an un-
trusted observer might be able to deduce the value of the guard and, thereby,
the secret. The PER model [SS99] even reduces the problem of making an entire
program secure to the problem of making the program equivalent to itself.

In our approach, meta-variables are inserted into a program and are instan-
tiated with programs during the transformation. The problem of making two
program fragments equivalent is cast as a unification problem, which allows us
to automatically compute suitable substitutions using existing unification al-
gorithms. The approach is parametric in two equivalence relations. The first
relation captures the semantic equivalence to be preserved by the transfor-
mation while the second relation captures the observational equivalence to be
achieved.

We define two concrete equivalence relations to instantiate our approach and
integrate this instance into an existing transforming type system [SS00]. This
results in a security type system that is capable of recognizing some secure pro-
grams and of correcting some insecure programs that are rejected by the original
type system. Moreover, the resulting programs are faster and often substantially
smaller in size. Another advantage over the cross-copying technique [Aga00],
which constitutes the current state of the art in this area, is that security poli-
cies with more than two levels can be considered. Besides these technical advan-
tages, the use of unification yields a very natural perspective on the problem of
making two programs observationally equivalent. However, we do not claim that
using unification will solve all problems with repairing insecure programs or that
unification would be the only way to achieve the above technical advantages.

The contributions of this article are a novel approach to making the informa-
tion flow in a given program secure and the demonstration that transforming
security type systems can benefit from the integration of this approach.

2 The Approach

The observational capabilities of an attacker can be captured by an equivalence
relation on configurations, i.e. pairs consisting of a program and a state. Namely,
(C1, s1) is observationally equivalent to (C2, s2) for an attacker a if and only if
the observations that a makes when C1 is run in state s1 equal a’s observations
when C2 is run in s2. The programs C1 and C2 are observationally equivalent for
a if, for all states s1 and s2 that are indistinguishable for a, the configurations
(C1, s1) and (C2, s2) are observationally equivalent for a. The resulting relation
on programs is only a partial equivalence relation (PER), i.e. a transitive and
symmetric relation that need not be reflexive. If a program C is not observa-
tionally equivalent to itself for a then running C in two indistinguishable states
may lead to different observations and, thereby, reveal the differences between

Eliminating Implicit Information Leaks 49

the states or, in other words, let a learn secret information. This observation is
the key to capturing secure information flow in the PER model [SS99] in which
a program is secure if and only if it is observationally equivalent to itself.

In this article, we focus on the removal of implicit information leaks from a
program. There is a danger of implicit information leakage if the flow of control
depends on a secret and the alternative execution paths are not observationally
equivalent for an attacker. The program if h then l:=1 else l:=0, for instance,
causes information to flow from the boolean guard h into the variable l, and this
constitutes an illegitimate information leak if h stores a secret and the value of
l is observable for the attacker. Information can also be leaked in a similar way,
e.g., when the guard of a loop depends on a secret, when it depends on a secret
whether an exception is raised, or when the target location of a jump depends
on a secret. For brevity of the presentation, we focus on the case of conditionals.

We view the problem of making the branches of a conditional equivalent as a
unification problem under a theory that captures observational equivalence. To
this end, we insert meta-variables into the program under consideration that can
be substituted during the transformation. For a given non-transforming security
type system, the rule for conditionals is modified such that, instead of checking
whether the branches are equivalent, the rule calculates a unifier of the branches
and applies it to the conditional. Typing rules for other language constructs are
lifted such that they propagate the transformations that have occurred in the
analysis of the subprograms. In summary, our approach proceeds as follows:

1. Lift the given program by inserting meta-variables at suitable locations.
2. Repair the lifted program by applying lifted typing rules.
3. Eliminate all remaining meta-variables.

The approach is not only parametric in the given security type system and in the
theory under which branches are unified, but also in where meta-variables are
placed and how they may be substituted. The latter two parameters determine
how similar a transformed program is to the original program. They also limit the
extent to which insecure programs can be corrected. For instance, one might de-
cide to insert meta-variables between every two sub-commands and to permit the
substitution of meta-variables with arbitrary programs. For these choices, lifting
P1 = if h then l:=1 else l:=0 results in if h then (α1; l:=1; α2) else (α3; l:=0; α4)
and the substitution {α1\l:=0, α2\ε, α3\ε, α4\l:=1} (where ε is denotes the
empty program) is a unifier of the branches under any equational theory as the
substituted program is if h then (l:=0; l:=1) else (l:=0; l:=1). Alternatively, one
might decide to restrict the range of substitutions to sequences of skip state-
ments. This ensures that the transformed program more closely resembles the
original program, essentially any transformed program is a slowed-down ver-
sion of the original program, but makes it impossible to correct programs like
P1. However, the program P2 = if h then (skip; l:=1) else l:=1, which is inse-
cure in a multi-threaded setting (as we will explain later in this section), can
be corrected under these choices to if h then (skip; l:=1) else (skip; l:=1). Al-
ternatively, one could even decide to insert higher-order meta-variables such
that lifting P1 leads to if h then α1(l:=1) else α2(l:=0) and applying, e.g., the

50 B. Köpf and H. Mantel

unifier {α1\(λx.skip), α2\(λx.skip)} results in if h then skip else skip while ap-
plying the unifier {α1\(λx.x), α2\(λx.l:=1)} results in if h then l:=1 else l:=1.
These examples just illustrate the wide spectrum of possible choices for defin-
ing in which sense a transformed program must be equivalent to the origi-
nal program. Ultimately it depends on the application, how flexible one is in
dealing with the trade-off between being able to correct more insecure pro-
grams and having transformed programs that more closely resemble the original
programs.

There also is a wide spectrum of possible choices for defining the (partial)
observational equivalence relation. For simplicity, assume that variables are clas-
sified as either low or high depending on whether their values are observable by
the attacker (low variables) or secret (high variables). As a convention, we denote
low variables by l and high variables by h, possibly with indexes and primes.
Given that the values of low variables are only observable at the end of a program
run, the programs P3 = (skip; l := 0) and P4 = (l := h; l := 0) are observationally
equivalent and each is equivalent to itself (which means secure information flow
in the PER model). However, if the attacker can observe also the intermediate
values of low variables then they are not equivalent and, moreover, only P3 is
secure while P4 is insecure. If the attacker can observe the timing of assignments
or the duration of a program run then P2 = if h then (skip; l:=1) else l:=1 is
insecure and, hence, not observationally equivalent to itself. In a multi-threaded
setting, P2 should be considered insecure even if the attacker cannot observe the
timing of assignments or the duration of a program run. If P3 = (skip; l := 0)
is run in parallel with P2 under a shared memory and a round-robin sched-
uler that re-schedules after every sub-command then the final value of l is
0 and 1 if the initial value of h is 0 and 1, respectively. That is, a program
that is observationally equivalent to itself in a sequential setting might not be
observationally equivalent to itself in a multi-threaded setting – for the same
attacker.

3 Instantiating the Approach

We are now ready to illustrate how our approach can be instantiated. We intro-
duce a simple programming language, a security policy, an observational equiv-
alence, and a program equivalence to be preserved under the transformation.

Programming Language. We adopt the multi-threaded while language (short:
MWL) from [SS00], which includes assignments, conditionals, loops, and a com-
mand for dynamic thread creation. The set Com of commands is defined by

C ::= skip | Id :=Exp | C1; C2 | if B then C1 else C2 | while B do C | fork(CV)

where V is a command vector in Com =
⋃

n∈N
Comn. Expressions are variables,

constants, or terms resulting from applying binary operators to expressions. A
state is a mapping from variables in a given set Var to values in a given set Val .
We use the judgment 〈|Exp, s|〉 ↓ n for specifying that expression Exp evaluates
to value n in state s. Expression evaluation is assumed to be total and to occur

Eliminating Implicit Information Leaks 51

atomically. We say that expressions Exp and Exp′ are equivalent to each other
(denoted by Exp≡Exp′) if and only if they evaluate to identical values in each
state, i.e. ∀s ∈ S : ∀v ∈ Val : 〈|Exp, s|〉 ↓ v ⇔ 〈|Exp′, s|〉 ↓ v.

The operational semantics for MWL is formalized in Figures 5 and 6 in the
appendix. Deterministic judgments have the form 〈|C, s|〉 � 〈|W, t|〉 expressing
that command C performs a computation step in state s, yielding a state t
and a vector of commands W , which has length zero if C terminated, length
one if it has neither terminated nor spawned any threads, and length > 1 if
threads were spawned. That is, a command vector of length n can be viewed
as a pool of n threads that run concurrently. Nondeterministic judgments have
the form 〈|V, s|〉 � 〈|V ′, t|〉 expressing that some thread Ci in the thread pool V
performs a step in state s resulting in the state t and some thread pool W . The
global thread pool V ′ results then by replacing Ci with W . For simplicity, we
do not distinguish between commands and command vectors of length one in
the notation and use the term program for referring to commands as well as to
command vectors. A configuration is then a pair 〈|V, s|〉 where V specifies the
threads that are currently active and s defines the current state of the memory.

In the following, we adopt the naming conventions used above. That is, s, t
denote states, Exp denotes an expression, B denotes a boolean expression, C
denotes a command, and V, W denote command vectors.

Security Policy and Labellings. We assume a two-domain security policy, where
the requirement is that there is no flow of information from the high domain to
the low domain. This is the simplest policy under which the problem of secure
information flow can be studied. Each program variable is associated with a secu-
rity domain by means of a labeling lab : Var → {low , high}. The intuition is that
values of low variables can be observed by the attacker and, hence, should only
be used to store public data. High variables are used for storing secret data and,
hence, their values must not be observable for the attacker. As mentioned before,
we use l and h to denote high and low variables, respectively. An expression Exp
has the security domain low (denoted by Exp : low) if all variables in Exp have
domain low and, otherwise, has security domain high (denoted by Exp : high).
The intuition is that values of expressions with domain high possibly depend on
secrets while values of low expressions can only depend on public data.

Observational Equivalence. The rules in Figure 1 inductively define a relation
�L ⊆ Com ×Com that will serve us as an observational equivalence relation.

The relation �L captures observational equivalence for an attacker who can
see the values of low variables at any point during a program run and cannot
distinguish states s1 and s2 if they are low equal (denoted by s1 =L s2), i.e. if
∀var ∈ Var : lab(var) = low =⇒ s1(var) = s2(var). He cannot distinguish two
program runs that have equal length and in which every two corresponding states
are low equal. For capturing this intuition, Sabelfeld and Sands introduce the
notion of a strong low bisimulation. The relation �L also captures this intuition
and, moreover, programs that are related by �L are also strongly bisimilar. That
is, �L is a decidable approximation of the strong bisimulation relation.

52 B. Köpf and H. Mantel

skip �L skip
[Skip]

Id : high

skip �L Id :=Exp
[SHA1]

Id : high

Id :=Exp �L skip
[SHA2]

Id : high Id ′ : high

Id :=Exp �L Id ′:=Exp′ [HA]
Id : low Exp : low Exp′ : low Exp ≡ Exp′

Id :=Exp �L Id :=Exp′ [LA]

C1 �L C′
1, . . . , Cn �L C′

n

〈C1, . . . , Cn〉 �L 〈C′
1, . . . , C

′
n〉

[PComp]
C �L C′ V �L V ′

fork(CV) �L fork(C′V ′)
[Fork]

B, B′ : low B ≡ B′ C1 �L C′
1 C2 �L C′

2

if B then C1 else C2 �L if B′ then C′
1 else C′

2
[LIte]

B, B′ : low B ≡ B′ C �L C′

while B do C �L while B′ do C′ [WL]

B, B′ : high C1 �L C′
1 C1 �L C′

2 C1 �L C2

if B then C1 else C2 �L if B′ then C′
1 else C′

2
[HIte]

C1 �L C′
1 C2 �L C′

2

C1; C2 �L C′
1; C′

2
[SComp]

B′ : high C1 �L C′
1 C1 �L C′

2

skip; C1 �L if B′ then C′
1 else C′

2
[SHIte1]

Id , B′ : high C1 �L C′
1 C1 �L C′

2

Id :=Exp; C1 �L if B′ then C′
1 else C′

2
[HAHIte1]

B : high C1 �L C′
1 C2 �L C′

1

if B then C1 else C2 �L skip; C′
1

[SHIte2]
Id ′, B : high C1 �L C′

1 C2 �L C′
1

if B then C1 else C2 �L Id ′:=Exp′; C′
1

[HAHIte2]

Fig. 1. A notion of observational equivalence

Definition 1 ([SS00]). The strong low-bisimulation �L is the union of all
symmetric relations R on command vectors V, V ′ ∈ Com of equal size, i.e. V =
〈C1, . . . , Cn〉 and V ′ = 〈C′

1, . . . , C
′
n〉, such that

∀s, s′, t∈ S : ∀i∈{1 . . . n} : ∀W ∈ Com:
[(V R V ′ ∧ s =L s′ ∧ 〈|Ci, s|〉� 〈|W, t|〉)
⇒∃W ′ ∈ Com: ∃t′ ∈ S: (〈|C′

i , s
′|〉� 〈|W ′, t′|〉 ∧W R W ′ ∧ t =L t′)]

Theorem 1 (Adequacy of �L). If V �L V ′ is derivable then V �L V ′ holds.

The proofs of this and all subsequent results are provided in an accompanying
Technical Report [KM05].

Remark 1. Note that �L and �L are only partial equivalence relations, i.e. they
are transitive and symmetric, but not reflexive. For instance, the program l:=h
is not �L-related to itself because the precondition of [LA], the only rule in
Figure 1 applicable to assignments to low variables, rules out that high variables
occur on the right hand side of the assignment. Moreover, the program l:=h is
not strongly low bisimilar to itself because the states s and t (defined by s(l) = 0,
s(h) = 0, t(l) = 0, t(h) = 1) are low equal, but the states s′ and t′ resulting after
l:=h is run in s and t, respectively, are not low equal (s′(l) = 0 = 1 = t′(l)).

However, �L is an equivalence relation if one restricts programs to the lan-
guage Slice that we define as the largest sub-language of Com without assign-
ments of high expressions to low variables, assignments to high variables, and
loops or conditionals having high guards. On Slice, �L even constitutes a congru-
ence relation. This sub-language is the context in which we will apply unification
and, hence, using the term unification under an equational theory is justified. ♦

Eliminating Implicit Information Leaks 53

Program Equivalence. We introduce an equivalence relation � to constrain the
modifications caused by the transformation. Intuitively, this relation requires a
transformed program to be a slowed down version of the original program. This
is stronger than the constraint in [SS00].

Definition 2. The weak possibilistic bisimulation � is the union of all sym-
metric relations R on command vectors such that whenever V R V ′ then for all
states s, t and all vectors W there is a vector W ′ such that

〈|V, s|〉 � 〈|W, t|〉 =⇒ (〈|V ′, s|〉�
∗ 〈|W ′, t|〉 ∧WRW ′)

and V = 〈〉 =⇒ 〈|V ′, s|〉�
∗ 〈|〈〉, s|〉 .

4 Lifting a Security Type System

In this section we introduce a formal framework for transforming programs by
inserting and instantiating meta-variables. Rather than developing an entirely
new formalism from scratch, we adapt an existing security type system from
[SS00]. We show that any transformation within our framework is sound in the
sense that the output is secure and the behavior of the original program is
preserved in the sense of Definition 2.

Substitutions and Liftings. We insert meta-variables from a set V = {α1, α2, . . . }
into a program by sequential composition with its sub-terms. The extension of
MWL with meta-variables is denoted by MWLV . The set ComV of commands
in MWLV is defined by1

C ::= skip | Id :=Exp | C1; C2 | C; X | X ; C
if B then C1 else C2 | while B do C | fork(CV) ,

where placeholders X, Y range over V . Analogously to MWL, the set of all com-
mand vectors in MWLV is defined by ComV =

⋃
n∈N

(ComV)n. Note that the
ground programs in MWLV are exactly the programs in MWL. The operational
semantics for such programs remain unchanged, whereas programs with meta-
variables are not meant to be executed.

Meta-variables may be substituted with programs, meta-variables or the spe-
cial symbol ε that acts as the neutral element of the sequential composition
operator (“;”), i.e. ε; C = C and C; ε = C2. When talking about programs in
ComV under a given substitution, we implicitly assume that these equations have
been applied (from left to right) to eliminate the symbol ε from the program.
Moreover, we view sequential composition as an associative operator and implic-
itly identify programs that differ only in the use of parentheses for sequential
composition. That is, C1; (C2; C3) and (C1; C2); C3 denote the same program.

A mapping σ : V → ({ε} ∪ V ∪ ComV) is a substitution if the set {α ∈ V |
σ(α) = α} is finite. A substitution mapping each meta-variable in a program
1 Here and in the following, we overload notation by using C and V to denote com-

mands and command vectors in ComV , respectively.
2 Note that skip is not a neutral element of (“;”) as skip requires a computation step.

54 B. Köpf and H. Mantel

V to {ε} ∪ Com is a ground substitution of V . A substitution π mapping all
meta-variables in V to ε is a projection of V . Given a program V in Com , we
call every program V ′ in ComV with πV ′ = V a lifting of V .

For example, the program if h then (α1; skip; α2; l:=1) else (α3; l:=1) is in fact
a lifting of if h then (skip; l:=1) else l:=1. In the remainder of this article, we will
focus on substitutions with a restricted range.

Definition 3. A substitution with range {ε}∪ StutV is called preserving, where
StutV is defined by C ::= X | skip | C1; C2 (the Ci range over StutV).

The term preserving substitution is justified by the fact that such substitutions
preserve a given program’s semantics as specified in Definition 2.

Theorem 2 (Preservation of Behavior).
1. Let V ∈ ComV . For all preserving substitutions σ, ρ that are ground for V ,

we have σ(V) � ρ(V).
2. Let V ∈ Com. For each lifting V ′ of V and each preserving substitution σ

with σ(V ′) ground, we have σ(V ′) � V .

Unification of Programs. The problem of finding a substitution that makes
the branches of conditionals with high guards observationally equivalent can
be viewed as the problem of finding a unifier for the branches under the equa-
tional theory �L.3 To this end, we lift the relation �L⊆ Com × Com to a
binary relation on ComV that we also denote by �L.

Definition 4. V1, V2 ∈ ComV are observationally equivalent (V1 �L V2) iff
σV1 �L σV2 for each preserving substitution σ that is ground for V1 and V2.

Definition 5. A �L-unification problem Δ is a finite set of statements of the
form Vi�?

LV ′
i , i.e. Δ = {V0�?

LV ′
0 , . . . , Vn�?

LV ′
n} with Vi, V

′
i ∈ ComV for all

i ∈ {0, . . . , n}. A substitution σ is a preserving unifier for Δ if and only if σ
is preserving and σVi �L σV ′

i holds for each i ∈ {0, . . . , n}. A �L-unification
problem is solvable if the set of preserving unifiers U(Δ) for Δ is not empty.

A Transforming Type System. The transforming type system in Figure 2 has
been derived from the one in [SS00]. We use the judgment V ↪→ V ′ : S for de-
noting that the MWLV -program V can be transformed into an MWLV -program
V ′. The intention is that V ′ has secure information flow and reflects the seman-
tics of V as specified by Definition 2. The slice S is a program that is in the
sub-language SliceV and describes the timing behavior of V ′. The novelty over
[SS00] is that our type system operates on ComV (rather than on Com) and
that the rule for high conditionals has been altered. In the original type system, a
high conditional is transformed by sequentially composing each branch with the
slice of the respective other branch. Instead of cross-copying slices, our rule in-
stantiates the meta-variables occurring in the branches using preserving unifiers.
The advantages of this modification are discussed in Section 6. Note that the
3 The term equational theory is justified as we apply unification only to programs in the

sub-language SliceV for which �L constitutes a congruence relation (see Remark 1).

Eliminating Implicit Information Leaks 55

skip ↪→ skip : skip
[Skp]

Id : high

Id :=Exp ↪→ Id :=Exp : skip
[Assh]

C1 ↪→ C′
1 : S1 C2 ↪→ C′

2 : S2

C1; C2 ↪→ C′
1; C′

2 : S1; S2
[Seq]

Id : low Exp : low

Id :=Exp ↪→ Id :=Exp : Id :=Exp
[Assl]

B : low C ↪→ C′ : S

while B do C ↪→ while B do C′ : while B do S
[Whl]

C1 ↪→ C′
1 : S1 . . . Cn ↪→ C′

n : Sn

〈C1, . . . , Cn〉 ↪→ 〈C′
1, . . . , C

′
n〉 : 〈S1, . . . , Sn〉

[Par]
C1 ↪→ C′

1 : S1 V2 ↪→ V ′
2 : S2

fork(C1V2) ↪→ fork(C′
1V

′
2) : fork(S1S2)

[Frk]

B : low C1 ↪→ C′
1 : S1 C2 ↪→ C′

2 : S2

if B then C1 else C2 ↪→ if B then C′
1 else C′

2 : if B then S1 else S2
[Condl]

B : high C1 ↪→ C′
1 : S1 C2 ↪→ C′

2 : S2 σ ∈ U({S1�?
LS2})

if B then C1 else C2 ↪→ if B then σC′
1 else σC′

2 : skip; σS1
[Condh]

X ↪→ X : X
[Var]

Fig. 2. A transforming security type system for programs with meta-variables

rule [Condh] does not mandate the choice of a specific preserving unifier of the
branches. Nevertheless, we can prove that the type system meets our previously
described intuition about the judgment V ↪→ V ′ : S. To this end, we employ
Sabelfeld and Sands’s strong security condition for defining what it means for
a program to have secure information flow. Many other definitions are possible
(see e.g. [SM03]).

Definition 6. A program V ∈ Com is strongly secure if and only if V �L V
holds. A program V ∈ ComV is strongly secure if and only if σV is strongly
secure for each substitution σ that is preserving and ground for V .

Theorem 3 (Soundness Type System). If V ↪→ V ′ : S can be derived then
(1) V ′ has secure information flow, (2) V � V ′ holds,4 and (3) V ′ �L S holds.

The following corollary is an immediate consequence of Theorems 2 and 3. It
shows that lifting a program and then applying the transforming type system
preserves a program’s behavior in the desired way.

Corollary 1. If V ∗ ↪→ V ′ : S is derivable for some lifting V ∗ ∈ ComV of a
program V ∈ Com then V ′ has secure information flow and V � V ′.

5 Automating the Transformation

In Section 4, we have shown our type system to be sound for any choice of lift-
ings and preserving unifiers in the applications of rule [Condh]. For automating
the transformation, we have to define more concretely where meta-variables are
inserted and how unifiers are determined.

Automatic Insertion of Meta-Variables. When lifting a program, one is faced
with a trade off: inserting meta-variables means to create possibilities for cor-
recting the program, but it also increases the complexity of the unification
4 Here and in the following, we define 	 on ComV by C 	 C′ iff σC 	 σC′ for any

substitution σ that is preserving and ground for C and for C′.

56 B. Köpf and H. Mantel

problem. Within this spectrum our objective is to minimize the number of in-
serted meta-variables without losing the possibility of correcting the program.

To this end, observe that two programs C1 and C2 within the sub-language
PadV , the extension of StutV with high assignments, are related via �L when-
ever they contain the same number of constants, i.e., skips and assignments to
high variables (denoted as const(C1) = const(C2)), and the same number of
occurrences of each meta-variable α (denoted by |C1|α = |C2|α). Note that the
positioning of meta-variables is irrelevant.

Lemma 1. For two commands C1 and C2 in PadV we have C1 �L C2 if and
only if const(C1) = const(C2) and ∀α ∈ V : |C1|α = |C2|α.

Moreover, observe that inserting one meta-variable next to another does not
create new possibilities for correcting a program. This, together with Lemma 1,
implies that inserting one meta-variable into every subprogram within PadV is
sufficient for allowing every possible correction. We use this insight to define a
mapping ⇀: Com → ComV that calculates a lifting of a program by inserting
one fresh meta-variable at the end of every sub-program in PadV , and between
every two sub-programs outside PadV . The mapping is defined inductively: A
fresh meta-variable is sequentially composed to the right hand side of each sub-
program. Another fresh meta-variable is sequentially composed to the left hand
side of each assignment to a low variable, fork, while loop, or conditional. A
lifting of a sequentially composed program is computed by sequentially compos-
ing the liftings of the subprograms while removing the terminal variable of the
left program. The three interesting cases are illustrated in Figure 3. The liftings
computed by ⇀ are most general in the sense that if two programs can be made
observationally equivalent for some lifting then they can be made equivalent for
the lifting computed by ⇀. In other words, ⇀ is complete.

Theorem 4. Let V ′
1 , V ′

2 , V1, and V2 be in ComV and let V1, V2 ∈ Com.

1. If Vi ⇀ Vi can be derived then Vi is a lifting of Vi (i = 1, 2).

2. Suppose V1 (V2) shares no meta-variables with V ′
1 , V ′

2 , and V2 (V ′
1 , V ′

2 , and
V1). If V1 ⇀ V1 and V2 ⇀ V2 can be derived and V ′

1 and V ′
2 are liftings

of V1, V2, respectively, then U({V ′
1�?

LV ′
2}) = ∅ implies U({V1�?

LV2}) = ∅.
Furthermore, U({V ′

1�?
LV ′

1}) = ∅ implies U({V1�?
LV1}) = ∅.

Integrating Standard Unification Algorithms. Standard algorithms for unifica-
tion modulo an associative and commutative operator with neutral element and
constants (see, e.g., [BS01] for background information on AC1 unification) build
on a characterization of equality that is equivalent to the one in Lemma 1. This

Id : high X fresh
Id :=Exp ⇀ Id :=Exp; X

C1 ⇀ C′
1 V2 ⇀ V ′

2 X, Y fresh
fork(C1V2) ⇀ X; (fork(C′

1V
′
2)); Y

C1 ⇀ C′
1; X C2 ⇀ C′

2

C1; C2 ⇀ C′
1; C′

2

Fig. 3. A calculus for computing most general liftings

Eliminating Implicit Information Leaks 57

correspondence allows one to employ existing algorithms for AC1-unification
problems with constants and free function symbols (like, e.g., the one in [HS87])
to the unification problems that arise when applying the rule for conditionals
and then to filter the output such that only preserving substitutions remain.5

Automating Unification. In the following, we go beyond simply applying an ex-
isting unification algorithm by exploiting the specific shape of our unification
problems and the limited range of substitutions in the computation of unifiers.
Recall that we operate on programs in SliceV , i.e., on programs without assign-
ments to high variables, without assignments of high expressions to low variables,
and without loops or conditionals having high guards.

The operative intuition behind our problem-tailored unification algorithm is
to scan two program terms from left to right and distinguish two cases: if both
leftmost subcommands are free constructors, (low assignments, loops, condi-
tionals and forks) they are compared and, if they agree, unification is recursively
applied to pairs of corresponding subprograms and the residual programs. If one
leftmost subcommand is skip, both programs are decomposed into their max-
imal initial subprograms in StutV and the remaining program. Unification is
recursively applied to the corresponding subprograms. Formally, we define the
language NSeqV of commands in SliceV \ {skip} without sequential composition
as a top-level operator, and the language NStutV of commands in which the left-
most subcommand is not an element of StutV . NStutV is given by C ::= C1; C2,
where C1 ∈ NSeqV and C2 ∈ SliceV .

C1�?
LC2 :: η C1, C2 ∈ StutV

X; C1�?
LC2 :: η[X\ε] [Seq1]

C1�?
LC2 :: η C1, C2 ∈ StutV

skip; C1�?
Lskip; C2 :: η

[Seq2]

C1�?
LC′

1 :: η1 C2�?
LC′

2 :: η2 C1,C
′
1∈NSeqV

C1; C2�?
LC′

1; C′
2 :: η1 ∪ η2

[Seq3]
C ∈ StutV ∪ {ε}
X�?

LC :: {X\C} [Var1]

C1�?
LC′

1 :: η1 C2�?
LC′

2 :: η2 C1,C
′
1∈StutV∪{ε}, C2,C

′
2∈NStutV

C1; C2�?
LC′

1; C′
2 :: η1 ∪ η2

[Seq4]

Id : low Exp1 ≡ Exp2

Id :=Exp1�?
LId :=Exp2 :: ∅

[Asg]
C�?

LC′ :: η V �?
LV ′ :: η2

fork(CV)�?
Lfork(C′V ′) :: η1 ∪ η2

[Frk]

Fig. 4. Unification calculus

The unification algorithm in Figure 4 is given in form of a calculus for deriv-
ing judgments of the form C1�?

LC2 :: η, meaning that η is a preserving unifier of
the commands C1 and C2. The symmetric counterparts of rules [Seq1],[Var1]
are omitted, as are the rules for loops, conditionals and command vectors,
5 For the reader familiar with AC1 unification: In the language StutV one views ε

as the neutral element, skip as the constant, and ; as the operator. For SliceV , the
remaining language constructs, i.e., assignments, conditionals, loops, forks, and ;
(outside the language StutV) must be treated as free constructors.

58 B. Köpf and H. Mantel

because they are analogous to [Frk]. Note that the unifiers obtained from re-
cursive application of the algorithm to sub-programs are combined by set union.
This is admissible if the meta-variables in all subprograms are disjoint, as the
following lemma shows:

Lemma 2. Let V1, V2 ∈ SliceV and let every variable occur at most once in
(V1, V2). Then V1�?

LV2 :: η implies η ∈ U({V1�?
LV2}).

Observe that the stand-alone unification algorithm is not complete, as it re-
lies on the positions of meta-variables inserted by ⇀. However, we can prove a
completeness result for the combination of both calculi.

Completeness. If conditionals with high guards are nested then the process of
transformational typing possibly involves repeated applications of substitutions
to a given subprogram. Hence, care must be taken in choosing a substitution in
each application of rule [Condh] because, otherwise, unification problems in later
applications of [Condh] might become unsolvable.6 Fortunately, the instantiation
of our framework presented in this section does not suffer from such problems.

Theorem 5 (Completeness). Let V ∈ Com, V , W ∈ ComV , W be a lifting
of V , and V ⇀ V .

1. If there is a preserving substitution σ with σW �L σW , then V ↪→′ V ′ : S
for some V ′, S ∈ ComV .

2. If W ↪→ W ′ : S for some W ′, S ∈ ComV then V ↪→′ V ′ : S′ for some
V ′, S′ ∈ ComV .

Here, the judgment V ↪→′ V ′ : S denotes a successful transformation of V to V ′

by the transformational type system, where the precondition σ ∈ U({S1�?
LS2})

is replaced by S1�?
LS2 :: σ in rule [Condh].

6 Related Work and Discussion

Type-based approaches to analyzing the security of the information flow in
concrete programs have received much attention in recent years [SM03]. This
resulted in security type systems for a broad range of languages (see, e.g.,
[VS97, SV98, HR98, Mye99, Sab01, SM02, BN02, HY02, BC02, ZM03, MS04]).

Regarding the analysis of conditionals with high guards, Volpano and Smith
[VS98] proposed the atomic execution of entire conditionals for enforcing obser-
vational equivalence of alternative execution paths. This somewhat restrictive
constraint is relaxed in the work of Agat [Aga00] and Sabelfeld and Sands [SS00]
who achieve observational equivalence by cross-copying the slices of branches.
The current article introduces unification modulo an equivalence relation as an-
other alternative for making the branches of a conditional observationally equiv-
alent to each other. Let us compare the latter two approaches more concretely
for the relation �L that we have introduced to instantiate our approach.
6 A standard solution would be to apply most general unifiers. Unfortunately, they do

not exist in our setting.

Eliminating Implicit Information Leaks 59

The type system introduced in Section 4 is capable of analyzing programs
where assignments to low variables appear in the branches of conditionals with
high guards, which is not possible with the type system in [SS00].

Example 1. If one lifts C = if h1 then (h2:=Exp1; l:=Exp2) else (l:=Exp2) where
Exp2 : low using our lifting calculus, applies our transforming type system, and
finally removes all remaining meta-variables by applying a projection then this
results in if h1 then (h2:=Exp1; l:=Exp2) else (skip; l:=Exp2), a program that is
strongly secure and also weakly bisimilar to C. Note that the program C cannot
be repaired by applying the type system from [SS00]. ♦

Another advantage of our unification-based approach over the cross-copying
technique is that the resulting programs are faster and smaller in size.

Example 2. The program if h then (h1:=Exp1) else (h2:=Exp2) is returned un-
modified by our type system, while the type system from [SS00] transforms it
into the bigger program if h then (h1:=Exp1; skip) else (skip; h2:=Exp2). If one ap-
plies this type system a second time, one obtains an even bigger program, namely
if h then (h1:=Exp1; skip; skip; skip) else (skip; skip; skip; h2:=Exp2). In contrast, our
type system realizes a transformation that is idempotent, i.e. the program re-
sulting from the transformation remains unmodified under a second application
of the transformation. ♦

Non-transforming security type systems for the two-level security policy can be
used to also analyze programs under a policy with more domains. To this end, one
performs multiple type checks where each type check ensures that no illegitimate
information flow can occur into a designated domain. For instance, consider a
three-domain policy with domains D = {top, left , right} where information may
only flow from left and from right to top. To analyze a program under this policy,
one considers all variables with label top and left as if labeled high in a first type
check (ensuring that there is no illegitimate information flow to right) and, in a
second type check, considers all variables with label top and right as if labeled
high . There is no need for a third type check as all information may flow to
top. When adopting this approach for transforming type systems, one must take
into account that the guarantees established by the type check for one domain
might not be preserved under the modifications caused by the transformation
for another domain. Therefore, one needs to iterate the process until a fixpoint
is reached for all security domains.

Example 3. For the three-level policy from above, the program C = if t then (t:=t′;
r:=r′; l:=l′) else (r:=r′; l:=l′) (assuming t, t′ : top, r, r′ : right and l, l′ : left)
is lifted to C = if t then (t:=t′; r:=r′; α1; l:=l′; α2) else (r:=r′; α3; l:=l′; α4) and
transformed into if t then (t:=t′; r:=r′; l:=l′) else (r:=r′; skip; l:=l′) when analyz-
ing security w.r.t. an observer with domain left . Lifting for right then results
in if t then (t:=t′; α1; r:=r′; l:=l′; α2) else (α3; r:=r′; skip; l:=l′; α4). Unification
and projection gives if t then (t:=t′; r:=r′; l:=l′; skip) else (skip; r:=r′; skip; l:=l′).
Observe that this program is not secure any more from the viewpoint of a
left–observer. Applying the transformation again for domain left results in the

60 B. Köpf and H. Mantel

secure program if t then(t:=t′; r:=r′; skip; l:=l′; skip)else (skip; r:=r′; skip; l:=l′; skip),
which is a fixpoint of both transformations. ♦
Note that the idempotence of the transformation is a crucial prerequisite (but
not a sufficient one) for the existence of a fixpoint and, hence, for the termination
of such an iterative approach. As is illustrated in Example 2, the transformation
realized by our type system is idempotent, whereas the transformation from
[SS00] is not.

Another possibility to tackle multi-level security policies in our setting is to
unify the branches of a conditional with guard of security level D′ under the
theory

⋂
D �≥D′ �D. An investigation of this possibility remains to be done.

The chosen instantiation of our approach preserves the program behavior in
the sense of a weak bisimulation. Naturally, one can correct more programs if
one is willing to relax this relationship between input and output of the transfor-
mation. For this reason, there are also some programs that cannot be corrected
with our type system although they can be corrected with the type system in
[SS00] (which assumes a weaker relationship between input and output).

Example 4. if h then (while l do (h1:=Exp)) else (h2:=1) is rejected by our type
system. The type system in [SS00] transforms it into the strongly secure program
if h then (while l do (h1:=Exp); skip) else (while l do (skip); h2:=1). Note that this
program is not weakly bisimilar to the original program as the cross-copying of
the while loop introduces possible non-termination. ♦
If one wishes to permit such transformations, one could, for instance, choose a
simulation instead of the weak bisimulation when instantiating our approach.
This would result in an extended range of substitutions beyond StutV . For
instance, to correct the program in Example 4, one needs to instantiate a meta-
variable with a while loop. We are confident that, in such a setting, using our
approach would even further broaden the scope of corrections while retaining
the advantage of transformed programs that are comparably small and fast.

7 Conclusions

We proposed a novel approach to analyzing the security of information flow in
concrete programs with the help of transforming security type systems where
the key idea has been to integrate unification with typing rules. This yielded a
very natural perspective on the problem of eliminating implicit information flow.

We instantiated our approach by defining a program equivalence capturing the
behavioral equivalence to be preserved during the transformation and an obser-
vational equivalence capturing the perspective of a low-level attacker. This led to
a novel transforming security type system and calculi for automatically inserting
meta-variables into programs and for computing substitutions. We proved that
the resulting analysis technique is sound and also provided a relative complete-
ness result. The main advantages of our approach include that the precision of
type checking is improved, that additional insecure programs can be corrected,
and that the resulting programs are faster and smaller in size.

Eliminating Implicit Information Leaks 61

It will be interesting to see how our approach performs for other choices of
the parameters like, e.g., observational equivalences that admit intentional de-
classification [MS04]). Another interesting possibility is to perform the entire
information flow analysis and program transformation using unification with-
out any typing rules, which would mean to further explore the possibilities of
the PER model. Finally, it would be desirable to integrate our fully automatic
transformation into an interactive framework for supporting the programmer in
correcting insecure programs.

References

[Aga00] J. Agat. Transforming out Timing Leaks. In Proceedings of the 27th ACM
Symposium on Principles of Programming Languages, pages 40–53, 2000.

[BC02] G. Boudol and I. Castellani. Noninterference for Concurrent Programs and
Thread Systems. Theoretical Computer Science, 281:109–130, 2002.

[BN02] A. Banerjee and D. A. Naumann. Secure Information Flow and Pointer Con-
finement in a Java-like Language. In Proceedings of the 15th IEEE Computer
Security Foundations Workshop, pages 253–270, Cape Breton, Nova Scotia,
Canada, 2002.

[BS01] F. Baader and W. Snyder. Unification theory. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chap-
ter 8, pages 445–532. Elsevier Science, 2001.

[HR98] N. Heintze and J. G. Riecke. The SLam Calculus: Programming with Secrecy
and Integrity. In Proceedings of the 25th ACM Symposium on Principles of
Programming Languages, pages 365–377, 1998.

[HS87] A. Herold and J. Siekmann. Unification in Abelian Semigroups. Journal of
Automated Reasoning, 3:247–283, 1987.

[HY02] K. Honda and N. Yoshida. A uniform type structure for secure information
flow. In Proceedings of the 29th ACM Symposium on Principles of Program-
ming Languages, pages 81–92. ACM Press, 2002.

[KM05] Boris Köpf and Heiko Mantel. Eliminating Implicit Information Leaks
by Transformational Typing and Unification. Technical Report 498, ETH
Zürich, 2005.

[MS04] Heiko Mantel and David Sands. Controlled Declassification based on In-
transitive Noninterference. In Proceedings of the 2nd ASIAN Symposium
on Programming Languages and Systems, APLAS 2004, LNCS 3303, pages
129–145, Taipei, Taiwan, November 4–6 2004. Springer-Verlag.

[Mye99] A. Myers. JFlow: Practical mostly-static information flow control. In Sym-
posium on Principles of Programming Languages, pages 228–241, 1999.

[Sab01] A. Sabelfeld. The Impact of Synchronisation on Secure Information Flow
in Concurrent Programs. In Proceedings of Andrei Ershov 4th International
Conference on Perspectives of System Informatics, volume 2244 of LNCS,
pages 225–239, 2001.

[SM02] A. Sabelfeld and H. Mantel. Static Confidentiality Enforcement for Dis-
tributed Programs. In Proceedings of the 9th International Static Analysis
Symposium, SAS’02, volume 2477 of LNCS, pages 376–394, Madrid, Spain,
2002.

[SM03] A. Sabelfeld and A. C. Myers. Language-based Information-Flow Security.
IEEE Journal on Selected Areas in Communication, 21(1):5–19, 2003.

62 B. Köpf and H. Mantel

[SS99] A. Sabelfeld and D. Sands. A Per Model of Secure Information Flow in
Sequential Programs. In Proceedings of the 8th European Symposium on
Programming, LNCS, pages 50–59, 1999.

[SS00] A. Sabelfeld and D. Sands. Probabilistic Noninterference for Multi-threaded
Programs. In Proceedings of the 13th IEEE Computer Security Foundations
Workshop, pages 200–215, Cambridge, UK, 2000.

[SV98] G. Smith and D. Volpano. Secure Information Flow in a Multi-Threaded Im-
perative Language. In 25th ACM Symposium on Principles of Programming
Languages, San Diego, California, pages 355–364, 1998.

[VS97] D. Volpano and G. Smith. A Type-Based Approach to Program Security. In
TAPSOFT 97, volume 1214 of LNCS, pages 607–621, 1997.

[VS98] D. Volpano and G. Smith. Probabilistic Noninterference in a Concurrent
Language. In Proceedings of the 11th IEEE Computer Security Foundations
Workshop, pages 34–43, Rockport, Massachusetts, 1998.

[ZM03] S. Zdancewic and A. Myers. Observational determinism for concurrent pro-
gram security. In Proceedings of the 16th IEEE Computer Security Founda-
tions Workshop, 2003, pages 29–47. IEEE Computer Society, 2003.

A Semantics of MWL

The operational semantics for MWL are given in Figures 5 and 6.

〈|Ci, s|〉 � 〈|W ′, t|〉
〈|〈C0 . . . Cn−1〉, s|〉 � 〈|〈C0 . . . Ci−1〉W ′〈Ci+1 . . . Cn−1〉, t|〉

Fig. 5. Small-step nondeterministic semantics

〈|skip, s|〉 � 〈|〈〉, s|〉 〈|Exp, s|〉 ↓ n

〈|Id :=Exp, s|〉 � 〈|〈〉, [Id = n]s|〉
〈|C1, s|〉 � 〈|〈〉, t|〉

〈|C1; C2, s|〉 � 〈|C2, t|〉
〈|C1, s|〉 � 〈|〈C′

1〉V, t|〉
〈|C1; C2, s|〉 � 〈|〈C′

1; C2〉V, t|〉 〈|fork(CV), s|〉 � 〈|〈C〉V, s|〉
〈|B, s|〉 ↓ True

〈|if B then C1 else C2, s|〉 � 〈|C1, s|〉
〈|B, s|〉 ↓ False

〈|if B then C1 else C2, s|〉 � 〈|C2, s|〉
〈|B, s|〉 ↓ True

〈|while B do C, s|〉 � 〈|C;while B do C, s|〉
〈|B, s|〉 ↓ False

〈|while B do C, s|〉 � 〈|〈〉, s|〉

Fig. 6. Small-step deterministic semantics

Abstract Interpretation to Check Secure
Information Flow in Programs with
Input-Output Security Annotations

N. De Francesco and L. Martini

Dipartimento di Ingegneria dell’Informazione, Università di Pisa,
Via Diotisalvi, 2, 52126 Pisa, Italy

{nico, luca.martini}@iet.unipi.it

Abstract. We present a method based on abstract interpretation to
check secure information flow in programs with dynamic structures where
input and output channels are associated with security levels. In the con-
crete operational semantics each value is annotated with a security level
dynamically taking into account both the explicit and the implicit in-
formation flows. We define a collecting semantics associating to each
program point the set of concrete states of the machine when the point
is reached. The abstract domains are obtained from the concrete ones by
keeping the security levels and forgetting the actual values. An element
of the abstract domain of states is a table whose rows correspond to the
instructions of the program. An abstract operational semantics is defined
on the abstract domain, and an efficient implementation is shown, oper-
ating a fixpoint iteration similar to that of the Java bytecode verification.
The approach allows certifying a larger set of programs with respect to
the typing approaches to check secure information flow.

1 Introduction

The secure information flow within programs in multilevel secure systems re-
quires that information at a given security level does not flow to lower levels
([14]). Analyzing secure information flow allows a finer inspection of confiden-
tiality than that obtained by using access control mechanisms. In fact access
control mechanisms control only the release of information, but are not able to
check the propagation of the information within the accessed entity. Instead,
checking information flows makes it possible to control, once given an access
right, whether the accessed information is properly used, according to some con-
fidentiality policy.

We consider sequential programs communicating with the external environ-
ment by means of input and output channels. The program defines also a security
policy by assigning a security level to each channel. A program has secure in-
formation flow if the observation of a channel having some security level does
not reveal any information about the values input from channels associated with
higher security levels. The language includes dynamic structures and pointers.

We analyze secure information flow by means of abstract interpretation (AI).
Abstract interpretation [11, 12, 13] is a method for analyzing programs in order

T. Dimitrakos et al. (Eds.): FAST 2005, LNCS 3866, pp. 63–80, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

64 N. De Francesco and L. Martini

to collect approximate information about their run-time behavior. It is based
on a non-standard semantics, that is a semantic definition in which a simpler
(abstract) domain replaces the standard (concrete) one, and the operations are
interpreted on the new domain. Using this approach different analyses can be
systematically defined. Moreover, the proof of the correctness of the analysis can
be done in a standard way. In the paper first we define a concrete operational
semantics which handles, in addition to execution aspects, the level of the flow
of information of the program. The basis of the approach is that each value is
annotated by a security level. Also each channel is associated with a security
level, representing the lub of the levels of the data present in the channel. The
level of the input data is assumed to be that specified for the channel by the
security policy. The level of data flowing through the variables and structures
of the program is calculated dynamically taking into account the information
flows. We then define a collecting semantics associating to each program point
(instruction) the set of concrete states in which the machine can be when the
point is reached. We prove that the program is secure if in all states of the
collecting semantics the level of each channel is less than or equal to that specified
by the policy defined by the program. The proofs of all theorems can be found
in the internal report [16].

The abstract domains are obtained from the concrete ones by keeping the
security levels and forgetting the actual values. A main point is the domain of
references. A state of the abstract semantics is a table having a row for each in-
struction. Each row is the abstraction of all concrete states in which the machine
can be when executing the corresponding instruction. The table may be built
by a fixpoint iteration algorithm similar to that used by bytecode verification in
the Java Virtual Machine [24]. As a consequence, it is particularly efficient.

2 The Model

We consider the simple language illustrated in Figure 1. We indicate with k
a literal value and with s, f, x, a, respectively, generic structure, field, variable
and channel name. E represents the expressions and C the commands. Each
instruction is labeled by a label t ∈ B = {0, 1, . . . , n− 1} , where n is the
number of instructions in the program. Besides basic data, the language handles
dynamic structures. We denote by New the subset of the new instructions in B.

P ::= {D; C}
D ::= T x |in σ a | out σ a| D ; D
T ::= int | S
S ::= struct s {D}
C ::= t : x = E | t : x.f = E | t : x = new s | t : a?x | t : a!E |skip

t : if(E) C else C; | t : while(E) C; | C; C
E ::= k | E Op E | x | x.f

Fig. 1. Language grammar

Abstract Interpretation to Check Secure Information Flow in Programs 65

Every program P can retrieve data from a set of input channels and can send
data to a set of output channels. If a is an input channel, the command a?x takes
an item from a and assign it to variable x. The command a!e sends the value of
expression e over the output channel a, provided that e is an expression returning
a basic type (int). In the following, we denote as NamesI (respectively, NamesO)
the set of input (output) channels used by a program; moreover Names=NamesI

∪ NamesO and NamesI ∩ NamesO = ∅. We assume that programs are type correct.
The input and output channels represent the external environment in which

the program is executed, that is all the interactions of the program occur by
means of the channels and an external server is not able to inspect the internal
state of the program. A security policy assigns to each input and output channel
a security level, representing a fixed degree of secrecy. The security policy is
expressed by the declaration of the channels. A channel a is declared by using
the keyword in (out) to indicate that is an input (output) channel and by
indicating also its security level. Security levels are defined as a finite lattice
(L,�L), ranged over by σ, τ, . . . and partially ordered by �L. In the following
we indicate by S : Names → L the security policy specified by the channels
declarations.

Definition 1 (secure information flow). Let P be a program and S a security
policy for P . Given σ ∈ L, let us denote by Names
σ

I (Names
σ
O) the set of

channels a belonging to NamesI (NamesO) such that S(a) � σ. P has σ-secure
information flow (is σ-secure) under S if all concrete executions starting from
the same configuration of input channels Names
σ

I , input the same sequence of
values from channels in Names
σ

I and output the same sequence of values on
channels in Names
σ

O . P has secure information flow (is secure) if it is σ-secure
for each σ ∈ L.

An external attacker having secrecy level σ cannot infer information that is more
secret than σ from a σ-secure program if he can inspect only input and output
channels with level less than or equal to σ.

Let us show some examples of programs. Consider the programs in Figure 2
and suppose that a and d are input channels and b is an output channel. Moreover
S(a) = h, S(b) = S(d) = l, with l � h. Since in this example there are only two
security levels, we can say that channels b and d are public, while channel a is
private.

Program P1 shows an explicit insecure information flow, since the value out-
put on channel b depends on the value input from a: private information is made
available to a public observer. Program P2 is insecure because it is possible to
know if the private input is zero by observing the value present on the public
output channel. In program P3 the private value affects the contents of input
channel d, from which an item is taken only if the input is zero. Note that we
consider observable both the input and the output channels. In program P4 the
number of the values output on channel b depends on the input value. In program
P5 the first iteration of the while is driven by a low value, while the following
iterations depend on high level information. Also program P6 may have an illicit

66 N. De Francesco and L. Martini

P1. 1: a?x; 2: b!x;
P2. 1: y=1; 2:a?x; 3: if (x==0) 4: y=0; else 5: skip; 6: b!y
P3. 1: a?x; 2: if (x==0) 3: d?y; else skip;
P4. 1: a?x; 2: while (x>0) (3: b!1; 4: x=x-1;)
P5. 1: d?x; 2: while (x>0) (3: b!1; 4: a?x;)
P6. 1: a?x; 2: while (x>0) 3: x=x-1; 4: b!1;
P7. 1: a?y; 2: y:=0; 3: b!y;
P8. 1: s1=new S; 2: s2=new S; 3: a?x; 4: if(x) 5: s3=s1; else 6: s3=s2; 7: s3.f=1;

Fig. 2. Some examples

information flow, even if the value output on channel b is always the same: it
is possible that, due to an infinite loop, no value is output on channel b. Pro-
gram P7 is secure, since the output value, which is constant, does not depend
on the input: even if y it is written with a high value, afterward it is assigned
a constant value, and this one is given as an output. Consider program P8 and
suppose that S is an user-defined structure with two int fields f and g, and
that s1, s2, s3 are references of type S. Please notice that, depending on the
value taken from the high level input channel a, instruction 7 updates field f
of two different objects (created at the first two instructions). Now consider the
two cases in which instruction 7 is followed by: (i) 8:b!s1.g; (ii) 8:b!s1.f;. In
case (i) the program is secure because field g of object created at instruction 1 is
the same in any computation. On the contrary, in case (ii), the value of the field
s1.f depends on the input: by aliasing, the assignment in instruction 7 could
have modified it.

3 Concrete Semantics

In this section we define the concrete semantics of the language. To take into
account the security level of data, we annotate each value v flowing through the
variables and the structure fields with a security level, representing the least
upper bound of the security levels of the explicit and implicit information flows
on which v depends. A value is a pair (ve, σ), where ve is an execution value and
σ a security level. The domains of the concrete semantics are shown in Figure 3.
An execution value may be an integer k ∈ Z or a reference to an user-defined
structure. A reference is in turn a pair (�, t), where � ∈ Ae is a heap address
and t ∈ New is the label of the instruction which created the corresponding
structure. This tag will be useful in the abstraction to coalesce into a same
abstract structure all structures created at the same instruction. The memory

v ∈ V = (Z ∪A)× L
μ ∈ M = Var → V
c ∈ C = Names → (Z� × L)

A = Ae × New
ξ ∈ Ξ = A →Mstruct

q ∈ Q = B ×Env ×M× Ξ × C

Fig. 3. Domains of the concrete semantics

Abstract Interpretation to Check Secure Information Flow in Programs 67

Const 〈k, μ, ξ〉 E−→(k,⊥L)
Op

〈E1, μ, ξ〉 E−→(ve
1, σ1), 〈E2, μ, ξ〉 E−→(ve

2 , σ2)

〈E1 op E2, μ, ξ〉 E−→(ve
1 op ve

2 , σ1 �L σ2)

Value
x

〈x,μ, ξ〉 E−→μ(x)
Value

x.f

μ(x) = ((, t), σ1), ξ(, t)(f) = (ve, σ2)

〈x.f, μ, ξ〉 E−→(ve, σ1 �L σ2)

Fig. 4. Concrete semantics of expressions

is represented by means of two functions: one denoted by μ, that associates
every variable with its value, and the other, denoted by ξ, that associates the
addresses (references) with the respective structure instances. Every structure
in the heap can be represented by a memory whose variables are the fields. Valid
fields names are in the domain F . We denote by MS the domain of memories
having the fields of structure S as variables, and by Mstruct the set: Mstruct =⋃
{MS |S used in P}. The state of input and output channels c ∈ C is a mapping

from the names of the channels to pairs (s, σ), where s ∈ Z� is a finite sequence of
values and σ a security level. Initially, the security level of each input channel a
is set to S(a), that is the security level defined for a by the security specification.
As a consequence, each value taken from an input channel a is annotated with
S(a). The security level of the output channels is initially set to the minimum
level ⊥L. The security level of the channels can be modified by the computation,
when the channel is accessed.

The concrete semantics is defined by means of a set of rules: the rules for
expressions are shown in Figure 4 and the rules for instructions in Figure 5. Let
us consider the rules for expressions, defining a relation E−→ ⊆ (expr×M×Ξ)×V .
Rule Const assigns the bottom security level to any constant value. Rule Op
calculates the security level of the result of an operation as the lub of the security
levels of the operands. Rule Valuex returns the value of the variable in the
memory. Rule Valuex.f annotates the resulting value with the lub of the security
levels of the reference and of the value stored in the field.

The rules for instructions (Figure 5) define a relation−→ ⊆ Q×Q between the
states of the computation. The set of concrete states is Q = B×Env×M×Ξ×C,
where Env = B → L. Each state q ∈ Q is a tuple 〈t, ρ, μ, ξ, c〉 describing the
configuration of the machine when executing the command t: μ and ξ define
the values of variables and structures fields, while c represent the status of the
channels. We also keep in each state a security environment ρ ∈ Env, assigning
to every program point a security level representing the level of the implicit
flow under which the corresponding command is executed. In the following,
given an instruction label t and a set Q of states, we use the notation Q(t)
to denote the set of states in Q corresponding to instruction t. A value (ve, τ)
evaluated, assigned or tested while the execution is under a security environment
σ, changes its security level into σ�τ . The environment, initially set to ⊥L for all
commands, can be updated by the conditional and repetitive commands. With
succ(t) we indicate the successive instruction to be executed. All commands

68 N. De Francesco and L. Martini

Assign
t:x=E

〈E, μ, ξ〉 E−→(ve, σ)
〈t, ρ, μ, ξ, c〉−→〈succ(t), ρ,μ [x ← (ve, ρ(t) �L σ)] , ξ, c〉

Assign
t:x.f=E

〈E, μ, ξ〉 E−→(ve, σ1), μ(x) = ((, t1), σ2), σ3 = σ1 �L σ2 �L ρ(t)
〈t, ρ,μ, ξ, c〉−→〈succ(t), ρ, μ, ξ [(, t1), f ← (ve, σ3)] , c〉

New
t:x=new S

fresh(ξ) = 	

〈t,ρ, μ, ξ, c〉−→〈succ(t), ρ, μ [x ← ((, t),ρ(t))] , ξ [(, t) ← μS⊥] , c〉

Input
t:a?x

c(a) = (k · s, σ), a ∈ NamesI

〈t, ρ,μ, ξ, c〉−→〈succ(t), ρ, μ [x ← (k, ρ(t) �L σ)] , ξ, c [a ← (s,ρ(t) �L σ)]〉

Output
t:b!E

〈E, μ, ξ〉 E−→(k, σ1), c(b) = (s, σ2), b ∈ NamesO

〈(t, ρ,μ, ξ, c〉−→〈succ(t), ρ, μ, ξ, c [b ← (k · s, ρ(t) �L σ1 �L σ2)]〉

If
t:if (E) C
else C, (true)

〈E, μ, ξ〉 E−→(true, σ)

〈t, ρ, μ, ξ, c〉−→ succtrue(t), ρ [t′ ← ρ(t′) �L σ]∀t′∈scope(t) , μ, ξ, c

While
t:while (E) C
(true)

〈E, μ, ξ〉 E−→(true, σ)

〈t,ρ, μ, ξ, c〉−→ succtrue(t),ρ [t′ ← ρ(t′) �L σ]∀t′∈scope(t) , μ, ξ, c

Fig. 5. Concrete semantics of commands

have only one successor, except the conditional and repetitive commands that
have two successors, depending on the value of the guard; they are denoted by
succtrue(t) and succfalse(t). We assume that the first instruction of the program
has label t0 and that for the last instruction is succ(t) = end.

Rule Assignt:x=e annotates the security level of the value to be assigned
with the lub of the security level resulted by the evaluation of the expression
and the environment of the instruction t. The notation μ [x← (ve, σ)] stands
for the memory obtained by μ by updating the contents for the variable x with
the value (ve, σ). Rule Assignt:x.f=e annotates the value to be assigned with
the lub of 1) the security level resulted by the evaluation of the expression, 2)
the security level of the reference, and 3) the environment of t. In the rule, the
notation ξ [(�, t), f ← v] indicates the heap ξ′ obtained from ξ by updating the
field f of the structure located at address � (and created at instruction t) with
the value v.

Rule New contains the notation ξ [(�, t)← μS⊥], meaning that, during the
execution of instruction t, in the heap ξ a new structure of type S is created at
address �, its fields containing the default value. We assume the default value is
the pair (0,⊥L). In the premise of the rule the function fresh : Ξ → A is used
to find a free location in the heap to store the new structure.

Rule Input takes a value from the specified input channel and assigns it to
the destination variable, annotated with the lub of the level σ of the channel and

Abstract Interpretation to Check Secure Information Flow in Programs 69

the environment of t. Also the level of the channel is updated in the same way.
As a consequence, if ρ(t) is higher than σ, the level of the channel is upgraded, to
record the fact that the manipulation of the channel depends on an information
flow with level σ �L ρ(t). Analogously, in the Output rule, the level of the
specified output channel is possibly upgraded taking into account the level of
the value and that of the environment of the instruction.

The If and While rules, whatever branch is chosen, affect the environ-
ment of all the instructions belonging to the scope of the command, taking
into account the level of the condition. The set scope(t) contains all the in-
structions that can be executed or not depending on the condition. In the If
case, scope(t) includes all the instructions belonging to only one branch start-
ing from the If. For the While command, scope(t) includes all instructions
following the While, that is the instructions belonging to the loop (the true
part of the While) and also all instructions after the loop until the end of
the program (the false part). The inclusion of these instructions takes into ac-
count the possibility of an infinite loop: in this case, the commands following
the loop will never be executed. Updating the environment is necessary to trace
implicit flow: the value of the condition (with its security level) drives the ex-
ecution of the instructions in scope(t). The table shows only the rule to be
applied when the condition is true. The rule to be applied when the condi-
tion is false (not shown) is equal except that has succfalse instead of succtrue.

Definition 2 (initial state). Given an initial configuration i0 : NamesI → Z�

of the input channels, the initial state is defined as q(i0) = 〈t0, ρ⊥, μ0, ξλ, c0〉,
where ρ⊥ associates ⊥L to all instruction labels, μ0 associates to every variable
declared in the program the default value, ξλ is the heap with empty domain
(that is, the everywhere undefined function). The state c0 is such that for all
a ∈ NamesI , c0(a) = (i0(a),S(a)) and for all a ∈ NamesO, c0(a) = (λ,⊥L).

We now define a collecting semantics, associating with each instruction the set
of states in which the instruction can be executed in any computation.

First we define an alignment operation align(Q) which, given a set of states Q,
aligns all the states corresponding to the same instruction. align(Q) increments
Q with some extra states: for each instruction t and each state q ∈ Q(t), a state
q′ is added to Q having the same execution values occurring in q, but where
the security levels of the environment, memory variables, fields of structures and
channels are upgraded to the lub in L of the levels occurring in the states in
Q(t) for the same items. In Fig. 6 are shown some auxiliary functions used in
the alignment process.

Let Q be a set of states: then maxM(Q, x) is the lub of the security levels of
x in the memories occurring in the states of Q. For each t ∈ B, maxE(Q, t) is
the lub of the values of ρ(t) in the environment occurring in the states of Q. For
each field f of each structure created at instruction (�, t) ∈ A, maxΞ(Q, �, t, f)
is the lub of the values held by the field f in the heap occurring in the states
of Q. For each channel a ∈ Names, maxC(Q, a) is the lub of the security levels
held by the channel a in the states of Q. Finally, given a value v = (ve, τ), with

70 N. De Francesco and L. Martini

maxE : Q× B → L maxE(Q, t) =
⊔

L {ρ(t)| 〈t′, ρ, μ, ξ, c〉 ∈ Q}
maxM : Q× V ar → L maxM(Q, x) =

⊔
L {σ| 〈t, ρ, μ, ξ, c〉 ∈ Q, μ(x) = (ve, σ)}

maxΞ : Q×A×F → L maxΞ(Q, �, t, f) =
⊔

L {σ| 〈t, ρ, μ, ξ, c〉 ∈ Q, ξ(�, t)(f) = (ve, σ)}
maxC : Q× Names→ L maxC(Q, a) =

⊔
L {σ| 〈t, ρ, μ, ξ, c〉 ∈ Q, c(a) = (s, σ)}

Fig. 6. Auxiliary functions for merging

ve ∈ (Z ∪A), up(v, σ) = (ve, τ �L σ) is the value obtained by keeping unaltered
the execution part of the value and upgrading the annotation of v.

Now we can define the align function. Consider a set Q ⊆ Q of states. Given
a state q = 〈t, ρ, μ, ξ, c〉 ∈ Q let alignt(q, Q) = 〈t, ρ′, μ′, ξ′, c′〉} with:

∀t′ ∈ B : ρ′(t′) = maxE(Q(t), t′) ∀x ∈ V ar : μ′(x) = up(μ(x), maxM(Q(t), x))
∀(�, t′)∈ dom(ξ),f ∈ dom(ξ(�, t′)) :ξ′(�, t′)(f)=up(ξ(�, t′)(f), maxΞ(Q(t), �, t′, f))
∀a ∈ Names : c′(a) = up(c(a), maxC(Q, a))
align(Q) = (

⋃
q∈Q alignt(q, Q)) ∪Q

Definition 3 (concrete next operator next). Given a set of concrete states
Q ⊆ Q, the application of the next operator yields the aligned set of states that
are either in Q, or reached in one step of computation starting from a state
in Q.

next(Q) = align(Q ∪ {q|∃q′ ∈ Q : q′−→ q})

Proposition 1 (monotonicity of next). next is monotone in (℘(Q),⊆).

The concrete collecting semantics sem ∈ ℘(Q) is the set of all aligned concrete
states belonging to all executions.

Definition 4 (collecting semantics). The concrete collecting semantics sem
∈ ℘(Q) is the lub of the following increasing chain, defined for all n ∈ N:

sem0 = {q(i0)| ∀i0 ∈ (NamesI → Z�)}
semn+1 = next(semn)

Performing align at each step of semn aligns the security annotations of the
states corresponding to the join point of different branches of a conditional in-
struction, in order to properly manage implicit flows. Consider, for example,
program P2 of figure 2. If we consider an execution in which the input value
is 0, the branch true of the if command is executed, and at instruction 5 the
state is q = 〈5,⊥ρ, μ,⊥ξ, c〉, with μ(y) = (0, σ) where the annotation σ of 0
records the implicit flow of level σ under which the assignment to y has been
performed. If, instead, the input value is different from 0, variable x is not af-
fected in the conditional command and the state q′ = 〈5,⊥ρ, μ

′,⊥ξ, c
′〉 is reached,

where μ′(y) = (1,⊥L). This state does not represent the implicit flow, since the
level of the value held by y is low. Instead, the contents of y has been affected
also in this case by the implicit flow of level σ. The violation becomes evi-
dent only if there exists another execution in which y is updated in another

Abstract Interpretation to Check Secure Information Flow in Programs 71

branch of the conditional command. Since the alignment operation is applied
to the chain semn, there exists at least one j such that semj contains a state
〈5,⊥ρ, μ

′′,⊥ξ, c
′〉 where μ′′(y) = (1, σ). This state derives from the alignment

of q and q′ and represents the effect of the implicit flow on y in the case in
which the false branch has been chosen. The following theorem states that the
collecting semantics correctly represents the secure information flow property.

Theorem 1 (secure information flow). A program P has secure information
flow under a security policy S if for each concrete state 〈t, ρ, μ, ξ, c〉 ∈ sem, for
each channel a, if c(a) = (δ, σ), δ ∈ Z�, then σ � S(a).

Proof Sketch.The proof is made by proving σ-security for a generic σ. We define
a notion of σ-equivalence between states, such that two states are equivalent
iff 1) each annotation on memory, heap, environment and channels is either
� σ or � σ on both states and 2) they agree (have the same execution values)
on data annotated by security levels � σ. It holds that, under the hypothesis
of the theorem, two σ-equivalent states have the same execution values on in-
put/output channels with level � σ. Consider two executions starting from the
same values on channels in Names
σ

I . Until a conditional or repetitive instruc-
tion is reached with a high (� σ) guard, the two executions perform the same
instructions reaching at each step σ-equivalent states. When a conditional com-
mand is reached with a high guard it is possible that the two executions make
different sequences of instructions, possibly leading to not σ-equivalent states.
However all instructions executed until the end of the command is reached have
a high environment in both executions. Thus, if a variable is updated, the value
is annotated with a level � σ. Analogously for the fields of the structures and
for the input and output channels. Note that, while we are in the scope of the
conditional command, no input and/or output channel a can be affected with
S(a) � σ, otherwise sem does not respect the condition of the theorem. Let
both computations reach the end of the conditional commands, say instruction
t, at states q1 and q2, respectively. Let i and j be the corresponding indexes of
the chain semn, that is q1 ∈ semi and q2 ∈ semj. We have that, due to the
alignment applied by next, there are in semmax(i,j)(t) two states, say q′1 and q′2,
corresponding resp. to the alignment of q1 and q2, that is with the same execu-
tion values of q1 and q2, but with the security levels upgraded to the maximum
values between the two execution paths. It holds that q′1 and q′2 are σ-equivalent,
since only the elements not updated in any of the two branches can have a low
annotation. The above reasoning can be iterated starting from q′1 and q′2. If at
least one of the two executions does not reach the end of the command, this
means that a while with a high condition has been reached, but in this case
all instructions of the program reachable from the while are given a high envi-
ronment and no input/output operation on a channel may be executed without
raising the security level of the channel to a high value. By hypothesis, channels
with security level � σ cannot be affected from this point on. The same oc-
curs when a while with a high guard is reached not belonging to a conditional
command. ��

72 N. De Francesco and L. Martini

4 Abstract Domains

The method consists in definining a concrete and an abstract domain and two
functions between them: an abstraction function α and a concretization function
γ. The kind of abstraction and concretization function are choosen according to
the property that one need to prove. Neverthless, to ensure the correctness of
the method, the two functions have to be related by a Galois Connection or a
Galois Insertion, satisfying the properties Galois and Connection or Galois and
Insertion in the definition below.

Definition 5 (Galois Connection/Insertion). Let (C,⊆) and (A,�) be two
complete lattices. Two functions α : C �→ A and γ : A �→ C form a Galois inser-
tion between (C,⊆) and (A,�), iff all the following conditions hold:

– α-Monotonicity: ∀y, y′ ∈ C. y ⊆ y′ ⇒ α(y) � α(y′)
– γ-Monotonicity: ∀a, a′ ∈ A. a � a′ ⇒ γ(a) ⊆ γ(a′)
– Galois: ∀y ∈ C. y ⊆ γ(α(y))
– Connection: ∀a ∈ A. α(γ(a)) �A a
– Insertion: ∀a ∈ A. α(γ(a)) = a

For both connection and insertion, it must hold that, if y ∈ C and α(y) = a ∈ A,
then, if we concretize a, we obtain a set that contains the original one (y)
(Galois) ; if moreover we concretize a and then we abstract the result of the
concretization, we obtain an abstract element which is less than or equal to
a (connection) or equal to the starting element (insertion). Thus the insertion
represents a more precise and non redundant abstraction with respect to the
connection. Once defined the domains, given a concrete semantics acting on
objects belonging to the concrete domain, the abstract interpretation theory
provides systematic methods to design an abstract semantics such that it cor-
rectly approximates the concrete one. Moreover, showing that the concrete and
the abstract domains are connected by a Galois Insertion will be useful to prove
that the abstract flow equations converge to a fixpoint [20].

The abstract domains are obtained by eliminating from the concrete values
both the execution values and execution addresses. Every value maintains instead
its security annotation. Simple values (int) are no longer held and are repre-
sented with a · symbol. In order to make the heap finite we abstract onto the same
element different structures created at the same label. Moreover, an abstract ad-
dress �	 is composed of a set of labels in New. In this way �	 records all the possible
creation points of the structures pointed to by it during the computation. The
operations defined on the lattice of abstract values (V	,�	

V ,�	
V ,�	

V ,⊥	
V ,�	

V) are
reported in Figure 7. The abstraction of a set of simple values is the least upper
bound of their security levels. We assume that αV returns the bottom element of
V	 if applied to the empty set. Dually for the concretization function. The same
for the other abstraction functions. The abstraction of a set of concrete references
is an abstract reference that contains both the least upper bound of their secu-
rity levels and a set T ⊆ New of instruction points. T contains all the instructions
at which the structure referenced is created. For example, if v1 = ((�1, t1), σ1)
and v2 = ((�2, t2), σ2), then v	 = αV({v1, v2}) = ({t1, t2}, σ1 �L σ2).

Abstract Interpretation to Check Secure Information Flow in Programs 73

A� = ℘(New), V� = ({·} ∪ {⊥,�} ∪ A�)× L ranged over by v�
1, v

�
2, . . .

�V : v�
1 �V v�

2 iff v�
1 = (T1, σ1) ∧ v�

2 = (T2, σ2) ∧ T1 ⊆ T2 ∧ σ1 �L σ2∨
∨ v�

1 = (·, σ1) ∧ v�
2 = (·, σ2) ∧ σ1 �L σ2

�V : v�
1 �V v�

2 =
(T1 ∪ T2, σ1 �L σ2) if v�

1 = (T1, σ1) ∧ v�
2 = (T2, σ2)

(·, σ1 �L σ2) if v�
1 = (·, σ1) ∧ v�

1 = (·, σ2)
�V otherwise

�V : v�
1 �V v�

2 =
(T1 ∩ T2, σ1 �L σ2) if v�

1 = (T1, σ1) ∧ v�
2 = (T2, σ2)

(·, σ1 �L σ2) if v�
1 = (·, σ1) ∧ v�

1 = (·, σ2)
⊥V otherwise

⊥V = (⊥,⊥L) �V = (�,�L)

α1
V(v) =

(·, σ) v = (k, σ), k ∈ Z
({t}, σ) v = ((, t), σ), (, t) ∈ A y ∈ ℘(V), αV(y) =

V
vi∈y

α1
V(vi)

γV(v�) =

{(k, σ′)|k ∈ Z, σ′ �L σ} v� = (·, σ)
{((, t), σ′)|t ∈ T, (, t) ∈ A, σ′ �L σ} v� = (T, σ)
V v� = �V
∅ v� = ⊥V

Fig. 7. Lattice of abstract values

αM(y)(x) = αV ({μ(x)|μ ∈ y})
γM(μ�) = μ ∈M|∀x ∈ X.μ(x) ∈ γV(μ�(x))
αΞ(y)(t) = αM ({ξ(, t)|ξ ∈ y, (, t) ∈ dom(ξ)})
γΞ(ξ�) = ξ ∈ Ξ|∀t ∈ New.ξ(t) ∈ γM(ξ�(t))
αC(y)(a) = L{σ| c(a) = (δ,σ), c ∈ y}
γC(c�) = c ∈ C|∀a ∈ Names.c(a) = (s, σ), s ∈ Z�, σ �L c�(a)

Fig. 8. Abstraction and concretization functions for the abstract domains

An abstract memory μ	 ∈ M	
X = X → V	 maps every variable in the set

X to an abstract value. Two abstract memories can be compared only if their
domains are the same. When X = V ar we omit the subscript and indicate the
domain with M	. An abstract heap ξ	 ∈ Ξ	 = New → M	

struct is a map from
structure creation points to abstract memories representing fields contents. Two
heaps ξ	

1, ξ
	
2 can be compared only if each abstract address points to structures

of the same type, i.e. ∀t ∈ New, ξ	
1(t) and ξ	

2(t) are comparable memories. Input
and output channels are represented in the abstract domain C	 = Names → L
with tuples of security levels, one for each channel. Here, for brevity, we omit
the description of lattice operations (that are defined in a standard way) on
the domains M	, Ξ	 and C	, showing in Figure 8 their corresponding abstrac-
tion/concretization functions.

The abstract domain of states is Q	 = B → (L×M	×Ξ	×C). It contains all
functions associating the instruction labels B with elements in (L×M	×Ξ	×C).
Given an abstract state q	 ∈ Q	, and an instruction label t ∈ B, q	(t) =〈
σ, μ	, ξ	, c	

〉
is a tuple composed of a security level representing the security

environment of t, an abstract memory, heap and channels. We use q	(t).env to

74 N. De Francesco and L. Martini

denote σ. We denote by dom(q) = {t | q	(t) =
〈
σ, μ	, ξ	, c	

〉
∧ μ	 = ⊥	

M ∧
ξ	 = ⊥	

Ξ ∧ c	 = ⊥	
C} the instruction addresses to which q	 assigns a defined

value for memory, heap and channels. We have that (Q	,�Q) is a lattice, where,
the operation �Q is defined as the pointwise application of the corresponding
operation on the fields of the abstract states. Let us now consider the abstraction
and concretization functions between the concrete and abstract domains of the
states.

αQ : ℘(Q) → Q	 is defined as follows. Let Q be a set of concrete states in
Q = B×Env×M×Ξ×C. For each t ∈ B, it is αQ(Q)(t) =

〈
σ, μ	, ξ	, c	

〉
where

σ =
⊔

L{ρ(t)| 〈t′, ρ, μ, ξ, c〉 ∈ Q} μ	 = αM({μ| 〈t, ρ, μ, ξ, c〉 ∈ Q})
ξ	 = αΞ({ξ| 〈t, ρ, μ, ξ, c〉 ∈ Q}) c	 = αC({c| 〈t, ρ, μ, ξ, c〉 ∈ Q})

If an instruction t does not occur in Q, then the abstraction functions αM,
αΞ and αC will produce bottom values, excluding t from dom(αQ(Q)). Note that
the security environment of an instruction t (whether t is in dom(αQ(Q)) or not)
in the abstract state is the lub of the security environments assigned to t by all
states in Q. On the contrary, the abstract memory, heap and channels associ-
ated to t are the lub of the abstractions of the concrete memories, heaps and
channels, respectively, occurring the states of Q corresponding to the execution
of the instruction with label t. For the concretization function γQ : Q	 → ℘(Q)
we have:

γQ(q�) = { 〈t, ρ, μ, ξ, c〉 |t ∈ dom(q�), ∀t′ ∈ B, ρ(t′) � q�(t′).env, q�(t) =
〈
σ, μ�, ξ�, c�

〉
,

μ = γM(μ�), ξ = γΞ(ξ�), c = γC(c�)}

Proposition 2. The pairs of functions (αV ,γV), (αM, γM), (αΞ , γΞ), (αC , γC)
and (αQ, γQ) are Galois Insertions.

5 Abstract Semantics and Correctness

In this section we give an abstract semantics of the language allowing to finitely
execute the program in the abstract domain.

Figure 9 describes the abstract semantics of expressions. The rules of the
abstract semantics for instructions are shown in Figure 10. They define a relation
C	−→ between the abstract states: if the premise of the rule is true, the rule

Const
k, μ�, ξ� E�−→(·,⊥L)

Op
E1, μ

�, ξ� E�−→(·, τ1), E2, μ
�, ξ� E�−→(·, τ2)

E1 op E2, μ
�, ξ� E�−→(·, τ1 �L τ2)

Value
x

x, μ�, ξ� E�−→μ�(x)
Value

x.f

μ�(x) = (T, σ),
⊔

V,t∈T ξ�(t)(f) = (w, τ), w ∈ A� ∪ {·}
x.f, μ�, ξ� E�−→(w, τ �L σ)

Fig. 9. Abstract expressions semantics

Abstract Interpretation to Check Secure Information Flow in Programs 75

Assign
t:x=e

q�(t) = σ, μ�, ξ�, c� , q�(succ(t)) = σ′, μ′�, ξ′�, c′� , E, μ�, ξ� E�−→(w, τ)
q̄�(succ(t)) = σ′, μ′� �M μ� [x ← (w, σ �L τ)] , ξ′� �Ξ ξ�, c′� �C c�

Assign
t:x.f=e

q�(t) = σ, μ�, ξ�, c� , q�(succ(t)) = σ′, μ′�, ξ′�, c′� , E, μ�, ξ� E�−→(w, τ1),
μ�(x) = (T, τ2), τ3 = σ �L τ1 �L τ2

q̄�(succ(t)) =
〈
σ′, μ′� �M μ�, ξ′� �Ξ ξ�[tj , f ← (w, τ3)]∀tj∈T , c′� �C c�

〉

New
t:x=new S

q�(t) = σ, μ�, ξ�, c� , q�(succ(t)) = σ′, μ′�, ξ′�, c′�

q̄�(succ(t)) = σ′, μ′� �M μ� [x ← (t, σ)] , ξ′� �Ξ ξ�, c′� �C c�

Input
t:a?x

q�(t) = σ, μ�, ξ�, c� , q�(succ(t)) = σ′, μ′�, ξ′�, c′� , τ = c�(a) �L σ

q̄�(succ(t)) = σ′, μ′� �M μ� [x ← τ] , ξ′� �Ξ ξ�, c′� �C c� [a ← τ]

Output
t:b!E

q�(t) = σ, μ�, ξ�, c� , q�(succ(t)) = σ′, μ′�, ξ′�, c′� , E, μ�, ξ� E�−→(·, τ)
q̄�(succ(t)) = σ′, μ′� �M μ�, ξ′� �Ξ ξ�, c′� �C c� [b ← σ �L τ]

If, while
t:if (E) C
else C
while E C

q�(t) = σ, μ�, ξ�, c� , E, μ�, ξ� E�−→(·, τ),
q�(succtrue(t)) = σ′, μ′�, ξ′�, c′� , q�(succfalse(t)) = σ′′, μ′′�, ξ′′�, c′′� ,

q̄�(succtrue(t)) = σ′ �L τ, μ′� �M μ�, ξ′� �Ξ ξ�, c′� �C c�

q̄�(succfalse(t)) = σ′′ �L τ, μ′′� �M μ�, ξ′′� �Ξ ξ�, c′′� �C c� ,

∀t′ ∈ scope(t) : q̄�(t′).env = τ �L q�(t′).env

Fig. 10. Abstract semantics of commands

transforms the state q� in the state q̄� as described by the rule. There is only one
rule for if and while: in both cases, besides propagating the state unchanged to
the successors, the field env of all the instructions in scope(t) are updated. Rules
Valuex.f and Assignx.f=e need some explanations. In the abstract semantics,
the structure addresses are lost and the references, besides the security level,
contain the set T of possible creation points. Then, in order to obtain the abstract
value x.f needed by Rule Valuex.f , it is necessary to compute the lub of ξ�(ti)(f)
for all the ti in the set T . Similarly, to execute Rule Assignx.f=e, an assignment
must be performed for each abstract structure that x might refer to.

Definition 6 (next� operator). Given an abstract state q�, the application of
the next� operator yields the state reached in one step of computation from each
instruction:

next�(q�) =
⊔
{q̄�|q� C�−→ q̄�}

Proposition 3 (monotonicity of next�). next� is monotone in (Q�,��).

Definition 7 (initial abstract state q�
0). For the initial state q�

0 we have
dom(q�

0) = {t0} and q�
0(t0) =

〈
⊥L,⊥M,⊥Ξ , c�

0

〉
, where for all a ∈ NamesI , c

�
0(a)

= S(a) and for all a ∈ NamesO, c�
0(a) = ⊥L.

76 N. De Francesco and L. Martini

Definition 8 (abstract semantics). The abstract semantics sem� ∈ Q� is the
least upper bound in (Q�,��) of the following increasing chain, defined for all
n ∈ N:

sem�
0 = q�

0

sem�
n+1 = next�(An)

Proposition 4 (Local correctness). next� is a safe approximation of next:

∀Q ∈ ℘(Q) : next(Q) ⊆Q γQ(next�(αQ(Q)))

Theorem 2 (Global correctness). α(sem) �� sem�.

A consequence of the above theorem is the following corollary. Its meaning is
that we can use the abstract as a means to check secure information flow.

Corollary 1. If, given t ∈ B with sem�(t) =
〈
t, μ�, ξ�, c�

〉
, then ∀a ∈ Names, c(a)

�L S(a), then the considered program has secure information flow.

6 A Prototype Tool

A prototype tool (Iflow1) that, given a program, constructs its abstract seman-
tics sem�, has been developed. Iflow accepts programs written in the language
described in Section 2. The lattice L has been defined as the simplest two-level
chain {L,H}, with L �L H , but the tool can be easily extended to manage
with generic lattices. Iflow has been written in C++, using Flex [27] and Bison
[15] as scanner and parser generators. After having parsed the input file, Iflow
builds the initial abstract state q�

0. Then, starting from q�
0, it performs a least

fixed computation using the Kildall working list algorithm [22]. Finally, it dumps
sem�. Giving Iflow a “verbose” switch, it is possible to dump also each step of
the fixpoint calculation.

As an example, consider the application of the algorithm to programs P5 and
P8 in Figure 2. In Figure 11, we summarize the abstract execution, showing the
result of the algorithm (sem�) in the two cases. Let us briefly explain how the
state in Figure 11(a) is computed for P5. Initially, the entry point of the program
is inserted in the working list and abstractly executed. Every instruction brings
its successor into the working list, and, until instruction 4 is executed, the states
are unchanged from their default value. Execution of instruction 4 lifts the value
of x to h. Then, when the while instruction is newly executed, the environment
of all the instructions in its scope (3,4) is upgraded. The new execution of the
loop lifts the security level of channel b to h (because of the environment, see
Rule Output), thus making the program insecure. In Figure 11(b) we show
the abstract semantics for program P8. We can notice that, before executing
instruction 7, s3 may refer either to the object created at 1 or to the object
created at 2. After the abstract execution of instruction 7, the field f of both
the two abstract objects is upgraded.
1 Iflow is freely available at the URL: http://www.ing.unipi.it/∼o1103499

Abstract Interpretation to Check Secure Information Flow in Programs 77

Instruction env x a b d
1:d?x l l h l l

2:While (x > 0) l h h h l

3:b!1 h h h h l

4:a?x h h h h l

end: h h h h l

(a)

Instruction env x s1 s2 s3 1.f 1.g 2.f 2.g
1:s1=new S l l ∅, l ∅, l ∅, l l l l l

2:s2=new S l l 1, l ∅, l ∅, l l l l l

3:a?x l l 1, l 2, l ∅, l l l l l

4:if(x) 5: else 6: l h 1, l 2, l ∅, l l l l l

5:s3=s1 h h 1, l 2, l ∅, l l l l l

6:s3=s2 h h 1, l 2, l ∅, l l l l l

7:s3.f=1 h h 1, l 2, l {1, 2}, l l l l l

8:??? h h 1, l 2, l {1, 2}, l h l h l

(b)

Fig. 11. Abstract semantics of the programs a) P5 and b) P8, calculated using Iflow

Let us now give a short account of the complexity of such analysis: for space
complexity, it is O(N · log(M) · n) where N = �(V ar) + �(New) if the maximum
number of fields of each structure is constant, M is the number of elements in
L and n is the number of program points. The time complexity is theoretically
O(N2 ·M · n): every application of an abstract rule has a linear complexity in
N due to the least upper bound operation on the abstract memory and heap,
and, in the worst case, the abstract state of every instruction can assume up to
O(N ·M) different values during the verification process. However, in practice,
the number of abstract executions is much smaller. As suggested in [23] the
dataflow analysis can be conducted at the level of the basic blocks instead of
single instructions, saving only the state for the beginning of each basic block
and calculating the others on the fly: this can reduce the space complexity to
O(N · log(M) · B), and the time complexity to O(N2 ·M · B), where B is the
number of basic blocks.

7 Related Work and Conclusions

A recent survey of works on secure information flow is [30]. The problem has
been coped with mainly by means of typing. In type-based approaches, each
variable is assigned a security level, which is part of the type of the variable
and secure information flow is checked by means of a type system; see, for ex-
ample, [31, 1, 25, 7, 33]. The work [3] handles secure information flow in object-
oriented languages, with particular attention to pointers and objects. In [28, 29]
references, exceptions and let-polymorphism are treated for a call-by-value λ-
calculus.

With respect to typing, AI can give a finer inspection of information flows.
In fact, in order to check input/output non-interference, it is not necessary to
associate security levels to variables: a variable, during its life, can hold data
with different security levels without affecting non-interference, provided that
the output channels contain data with level less that or equal to the channel’s
level. Consider for example program P7 in section 2. Here variable y first holds
a high level datum (input from a high level channel), and after it is overwritten

78 N. De Francesco and L. Martini

with a low level one (a constant): since it is this constant to be output on the low
level channel, the program is correct. This program is certified by our approach,
while it is not accepted by typing approaches. We think that also declassification
(see, for example [26]) can be suitably handled by abstract interpretation. Other
papers based on AI [32, 18] takes as abstract domain the lattice of levels and
perform an AI with almost the same power of typing (in terms of class of certified
programs). Thus they do not exploit all the power of abstract interpretation. For
example, they do not certify program P7 above. On the other hand, the focus of
[18] is the definition of a framework based on AI able to represent a parameterized
notion of non-interference. Approaches that are able to cope with “temporary
breaking of security”, similar to that presented by program P7, are based on
theorem proving [19, 21]. AI is also exploited in [2] to annotate programs with
pre and postconditions defining variable dependences.

Some previous papers of the team to which the authors belong cope with the
definition of abstractions suitable to check secure information flow, based on the
annotation of data with security levels. The works [8, 6, 4, 9] handle secure infor-
mation flow in stack based machine languages, while the papers [5, 17] consider
high level languages, including parallel ones. In these papers abstract transition
systems are used, possibly having a high number of states: the same instruction
may belong to different states, characterized by different security environments
and memories. The number of states being high, the abstraction is not suitable
to be directly used for a definition of an analysis tool for checking secure infor-
mation flow. In fact there is a need for other techniques to be combined with
this abstraction method: in the above papers we used model checking to com-
plete the verification process (a similar combination of abstraction and model
checking is used in [10]). In the present paper, instead, the abstract semantics
is a table composed of a row for each program point and is built by an efficient
fixpoint algorithm using the abstract rules. Finally, the previous papers of the
authors do not cope with pointers and dynamic structures, here handled by a
suitable abstract domain.

References

1. M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of dependency. In
26th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages Proceedings, pages 147–160. Texas, Usa, 1999.

2. T. Amtoft and A. Banerjee. Information flow analysis in logical form. In R. Gia-
cobazzi, editor, SAS 2004 (11th Static Analysis Symposium), Verona, Italy, August
2004, volume 3148 of LNCS, pages 100–115. Springer-Verlag, 2004.

3. A. Banerjee and D. A. Naumann. Representation independence, confinement and
access control. In 29th ACM Symposium on Principles of Programming Languages
Proceedings, pages 166–177, 2002.

4. R. Barbuti, C. Bernardeschi, and N. De Francesco. Analyzing information
flow properties in assembly code by abstract interpretation. Computer Journal,
47(1):25–45, 2004.

Abstract Interpretation to Check Secure Information Flow in Programs 79

5. R. Barbuti, C. Bernardeschi, and N. D. Francesco. Abstract interpretation of
operational semantics for secure information flow. Information Processing Letters,
83(2):101–108, 2002.

6. R. Barbuti, C. Bernardeschi, and N. D. Francesco. Checking security of java byte-
code by abstract interpretation. In The 17th ACM Symposium on Applied Com-
puting: Special Track on Computer Security Proceedings, pages 229–236. Madrid,
March 2002.

7. G. Barthe and T. Rezk. Non-interference for a JVM-like language. In The ACM
SIGPLAN Workshop on Types in Language Design and Implementation (TLDI),
January 2005.

8. C. Bernardeschi and N. D. Francesco. Combining abstract interpretation and model
checking for analysing security properties of Java bytecode. In Third International
Workshop on Verification, Model Checking and Abstract Interpretation Proceedings,
pages 1–15. LNCS 2294, Venice, January 2002.

9. C. Bernardeschi, N. D. Francesco, and G. Lettieri. An abstract semantics tool for
secure information flow of stack-based assembly programs. Microprocessors and
Microsystems, 26(8):391–398, 2002.

10. P. Bieber, J. Cazin, P. Girard, J.-L. Lanet, V.Wiels, and G. Zanon. Checking
secure interactions of smart card applets. In ESORICS 2000 Proceedings, 2000.

11. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
Proceedings, pages 238–252. Los Angeles, California, 1977.

12. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Comp., 2:511–547, 1992.

13. P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tations. In ACM POPL’92 Proceedings, pages 83–94, 1992.

14. D. E. Denning. A lattice model of secure information flow. Comm. ACM, 19(5):236–
243, 1976.

15. C. Donnely and R. Stallman. Bison, the YACC-compatible parser generator. Free
Software Foundation, November 1995.

16. N. D. Francesco and L. Martini. Technical Report IET-05-01, IET - Dipartimento
di Ingegneria dell’Informazione, Università di Pisa, 2005.

17. N. D. Francesco, A. Santone, and L. Tesei. Abstract interpretation and model
checking for checking secure information flow in concurrent systems. Fundam.
Inf., 54(2-3):195–211, 2003.

18. R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-
interference by abstract interpretation. In Proc. ACM Symp. on Principles of
Programming Languages, pages 186–197, January 2004.

19. B. Jacobs, W. Pieters, and M. Warnier. Statically checking confidentiality via
dynamic labels. In Workshop on Issues in the Theory of Security proceedings.
ACM, 2005.

20. N. D. Jones and F. Nielson. Abstract interpretation: a semantic based tool for pro-
gram analysis. S. Abramsky, D.M. Gabbay, T.S.E. Maibaum(Eds.), Handbook of
Logic in Computer Science, Vol. 4:527–636, Oxford University Press, Oxford 1995.

21. R. Joshi and K. Leino. A semantic approach to secure information flow. Science
of Computer Programming, 37(1-3):113–138, May 2000.

22. G. Kildall. A unified approach to global program optimization. In Proceedings of
the 1st Annual ACM Symposium on Principles of Programming Languages, pages
194–206, 1973.

80 N. De Francesco and L. Martini

23. X. Leroy. Java bytecode verification: Algorithms and formalizations. Journal of
Automated Reasoning, 30(3-4):235–269, 2003.

24. T. Lindholm and F. Yellin. The Java virtual machine specification. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1996.

25. A. C. Myers. Jflow: Practical mostly-static information flow control. In ACM
POPL’99 Proceedings, pages 228–241, 1999.

26. A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification. In
CSFW, pages 172–186. IEEE Computer Society, 2004.

27. V. Paxson. Flex, a fast scanner generator, version 2.5, March 1995.
28. F. Pottier and S. Conchon. Information flow inference for free. In ACM ICFP’00

Proceedings, pages 46–57, 2000.
29. F. Pottier and V. Simonet. Information flow inference for ML. In 29th Annual

ACM Symposium on Principles of Programming Languages (POPL’02) Proceed-
ings, pages 319–330. Portland, Usa, 2002.

30. A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications, 21(1):5–19, 2003.

31. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.
Journal of Computer Security, 4(3):167–187, 1996.

32. M. Zanotti. Security typings by abstract interpretation. In Proc. of The 9th Static
Analysis Symp., pages 360–375. LNCS 2477, 2002.

33. S. Zdancewic and A. Myers. Secure information flow via linear continuations.
Higher Order and Symbolic Computation, 15(2/3), Kluwer Academic Publishers,
The Netherlands 2002.

Opacity Generalised to Transition Systems

Jeremy W. Bryans1, Maciej Koutny1, Laurent Mazaré2, and Peter Y.A. Ryan1

1 School of Computing Science, University of Newcastle,
Newcastle upon Tyne, NE1 7RU, United Kingdom

{jeremy.bryans, maciej.koutny, peter.ryan}@ncl.ac.uk
2 Laboratoire VERIMAG; 2, av. de Vignates, Gières, France

laurent.mazare@imag.fr

Abstract. Recently, opacity has proved a promising technique for
describing security properties. Much of the work has been couched in
terms of Petri nets. Here, we extend the notion of opacity to the model
of labelled transition systems and generalise opacity in order to better
represent concepts from the literature on information flow. In particular,
we establish links between opacity and the information flow concepts of
anonymity and non-inference. We also investigate ways of verifying opac-
ity when working with Petri nets. Our work is illustrated by an example
modelling requirements upon a simple voting system.

Keywords: opacity, non-deducibility, anonymity, non-inference, Petri
nets, observable behaviour, labelled transition systems.

1 Introduction

The notion of secrecy has been formulated in various ways in the computer
security literature. However, two views of security have been developed over
the years by two separate communities. The first one starts from the notion
of information flow, describing the knowledge an intruder could gain in terms
of properties such as non-deducibility or non-interference. The second view was
initiated by Dolev and Yao’s work and focussed initially on security protocols [7].
The idea here is to describe properly the capability of the intruder. Some variants
of secrecy appeared, such as strong secrecy, giving more expressivity than the
classical secrecy property but still lacking the expressivity of information flow
concepts.

Recently, opacity has been shown to be a promising technique for describing
security properties. Early work was couched in terms of Petri nets. In this pa-
per, we extend the notion of opacity to the more general framework of labelled
transition systems. When using opacity we have fine-grained control over the ob-
servation capabilities of the players, and we show one way that these capabilities
may be encoded. The essential idea is that a predicate is opaque if an observer
of the system will never be able to determine the truth of that predicate.

In the first section, after recalling some basic definitions, we present a gen-
eralisation of opacity, and show how this specialises into the three previously
defined variants. In Section 3, we show how opacity is related to previous work

T. Dimitrakos et al. (Eds.): FAST 2005, LNCS 3866, pp. 81–95, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

82 J.W. Bryans et al.

in security. In Section 4, we consider the question of opacity checking. After
restricting ourselves to Petri nets, we give some decidability and undecidability
properties. As opacity is undecidable as soon as we consider systems with infinite
number of states, we present an approximation technique which may provide a
way of model checking even in such cases. Finally, in Section 5, we consider a
voting scheme, and show how the approximation technique might be used. All
the proofs are available in [6].

2 Basic Definitions

The set of finite sequences over a set A will be denoted by A∗, and the empty
sequence by ε. The length of a finite sequence λ will be denoted by len(λ), and
its projection onto a set B ⊆ A by λ |B .

Definition 1. A labelled transition system (LTS) is a tuple Π = (S ,L,Δ,S0),
where S is the (potentially infinite) set of states, L is the (potentially infinite)
set of labels, Δ ⊆ S × L × S is the transition relation, and S0 is the nonempty
(finite) set of initial states. We consider only deterministic LTSs, and so for any
transitions (s , l , s ′), (s , l , s ′′) ∈ Δ, it is the case that s ′ = s ′′1.

A run of Π is a pair (s0,λ), where s0 ∈ S0 and λ = l1 . . . ln is a finite
sequence of labels such that there are states s1, . . . , sn satisfying (si−1, li , si), for
i = 1, . . . ,n. We will denote the state sn by s0⊕λ, and call it reachable from s.

The set of all runs is denoted by run(Π), and the language generated by Π is
defined as L(Π) = {λ | ∃ s0 ∈ S0 : (s0,λ) ∈ run(Π)}.

Let Π = (S ,L,Δ,S0) be an LTS fixed for the rest of this section, and Θ be a
set of elements called observables. We will now aim at modelling the different
capabilities for observing the system modelled byΠ . First, we introduce a general
observation function and then, specialise it to reflect limited information about
runs available to an observer.

Definition 2. Any function obs : run(Π) → Θ∗ is an observation function. It
is called label-based and: static / dynamic / orwellian / m-orwellian (m ≥ 1) if
respectively the following hold (below λ = l1 . . . ln):

– static: there is a mapping obs ′ : L → Θ ∪ {ε} such that for every run (s ,λ)
of Π, obs(s ,λ) = obs ′(l1) . . . obs ′(ln).

– dynamic: there is a mapping obs ′ : L×L∗ → Θ∪{ε} such that for every run
(s ,λ) of Π, obs(s ,λ) = obs ′(l1, ε)obs ′(l2, l1) . . . obs ′(ln , l1 . . . ln−1).

– orwellian: there is a mapping obs ′ : L × L∗ → Θ ∪ {ε} such that for every
run (s ,λ) of Π, obs(s ,λ) = obs ′(l1,λ) . . . obs ′(ln ,λ).

– m-orwellian: there is a mapping obs ′ : L × L∗ → Θ ∪ {ε} such that for
every run (s ,λ) of Π, obs(s ,λ) = obs ′(l1,κ1) . . . obs ′(ln ,κn), where for i =
1, . . . ,n, κi = lmax{1,i−m+1}lmax{1,i−m+1}+1 . . . lmin{n,i+m−1}.

1 A nondeterministic LTS can be transformed into a deterministic one through a
relabeling that assigns a unique label to each transition.

Opacity Generalised to Transition Systems 83

In each of the above four cases, we will often use obs(λ) to denote obs(s ,λ)
which is possible as obs(s ,λ) does not depend on s.

It is worth observing that both static and dynamic observation functions satisfy
monotonicity w.r.t. prefixes, i.e., if s ≺ t then obs(s) ≺ obs(t). The orwellian
observation functions do not in general satisfy this property.

Note that allowing obs ′ to return ε allows one to model invisible actions. The
different kinds of observable functions reflect different computational power of
the observers. Static functions correspond to an observer which always interprets
the same executed label in the same way. Dynamic functions correspond to an
observer which has potentially infinite memory to store labels, but can only use
knowledge of previous labels to interpret a label. Orwellian functions correspond
to an observer which has potentially infinite memory to store labels, and can
use knowledge of later labels to (re-)interpret a label. m-orwellian functions
are a restricted version of the last class where the observer can store only a
bounded number of labels. Static functions are nothing but 1-orwellian ones;
static functions are also a special case of dynamic functions; and both dynamic
and m-orwellian are a special case of orwellian functions.

Let us consider an observation function obs . We are interested in whether an
observer can establish a property φ (a predicate over system states and traces)
for some run having only access to the result of the observation function. We
will identify φ with its characteristic set: the set of runs for which it holds.

Now, given an observed execution of the system, we would want to find out
whether the fact that the underlying run belongs to φ can be deduced by the
observer (note that we are not interested in establishing whether the underlying
run does not belong to φ; to do this, we would rather consider the property
φ = run(Π) \ φ).

What it means to deduce a property can mean different things depending
on what is relevant or important from the point of view of a real application.
Below, we give a general formalisation of opacity and then specialise it in three
different ways.

Definition 3. A predicate φ over run(Π) is opaque w.r.t. the observation func-
tion obs if, for every run (s ,λ) ∈ φ, there is a run (s ′,λ′) /∈ φ such that
obs(s ,λ) = obs(s ′,λ′). Moreover, φ is called: initial-opaque / final-opaque /
total-opaque if respectively the following hold:

– there is a predicate φ′ over S0 such that for every run (s ,λ) of Π, we have
φ(s ,λ) = φ′(s).

– there is a predicate φ′ over S such that for every run (s ,λ) of Π, we have
φ(s ,λ) = φ′(s⊕λ).

– there is a predicate φ′ over S ∗ such that for every run (s , l1 . . . ln) of Π, we
have φ(s , l1 . . . ln) = φ′(s , s⊕l1, . . . , s⊕l1 . . . ln).

In the first of above three cases, we will often write s ∈ φ whenever (s ,λ) ∈ φ.
All these definitions of opacity are purely possibilistic: we make no reference
to the probability of φ being true. For a probabilistic treatment of opacity, the
reader is referred to [13].

84 J.W. Bryans et al.

Initial-opacity has been illustrated by the dining cryptographers example
(in [4] with two cryptographers and [5] with three). It would appear that it is
suited to modelling situations in which initialisation information such as crypto
keys, etc., needs to be kept secret. More generally, situations in which confiden-
tial information can be modelled in terms of initially resolved non-determinism
(i.e. non-determinism resolved before the first transition) can be captured in
this way. Final-opacity models situations where the final result of a computation
needs to be secret. Total-opacity is a generalisation of the two other properties
asking not only the result of the computation and its parameters to be secret
but also the states visited during computation.

Proposition 1. Let φ and φ′ be two predicates over run(Π). If φ is opaque
w.r.t. an observation function obs and φ′ ⇒ φ, then φ′ is opaque w.r.t. obs.

3 Opacity in Security

The goal of this section is to show how our notion of opacity relates to other con-
cepts commonly used in the formal security community. We will compare opacity
to forms of anonymity and non-interference, as well as discuss its application to
security protocols.

3.1 Anonymity

Anonymity is concerned with the preservation of secrecy of identity of a user
through the obscuring of the actions of that user. It is a function of the behaviour
of the underlying (anonymising) system, as well as being dependent on capability
of the observer.

For concreteness, assume a system with n users (indexed by i) each of whom
can perform multiple instances of a single action αi . Intuitively, if the observer
cannot distinguish these actions, and, as far as the observer is concerned, any
α may have been performed by any of the users, then the system is anonymous
with respect to the α actions.

The static, dynamic and orwellian forms of observation function presented in
Definition 2 model three different strengths of observer. We now introduce two
observation functions needed to render anonymity in terms of suitable opacity
properties.

Let Π = (S ,L,Δ,S0) be an LTS fixed for the rest of this section, and A =
{a1, . . . , an} ⊆ L be a set of labels over which anonymity is being considered.
Moreover, let α,α1, . . . ,αn /∈ L be fresh labels.

The first observation function, obss
A, is static and defined so that obss

A(λ) is
obtained from λ by replacing each occurrence of ai by α. The second observation
function, obsd

A, is dynamic and defined thus: let ai1 , . . . , aiq (q ≥ 0) be all the
distinct labels of A appearing within λ listed in the (unique) order in which they
appeared for the first time in λ; then obs(λ) is obtained from λ by replacing
each occurrence of aij by αj . For example,

obss
{a,b}(acdba) = αcdαα and obsd

{a,b}(acdba) = α1cdα2α1.

Opacity Generalised to Transition Systems 85

Strong anonymity. In [23], a definition of strong anonymity is presented for the
process algebra CSP. In our (LTS) context, this definition translates as follows.

Definition 4. Π is strongly anonymous w.r.t. A if L(Π) = L(Π ′), where Π ′

is obtained from Π by replacing each transition (s , ai , s ′) with n transitions:
(s , a1, s ′), . . . , (s , an , s ′).

In our framework, we have that

Definition 5. Π is O-anonymous w.r.t. A if, for every sequence μ ∈ A∗, the
predicate φμ over the runs of Π defined by

φμ(s ,λ) =
(
len(λ |A) = len(μ) ∧ λ |A = μ

)
is opaque w.r.t. obss

A.

We want to ensure that every possible sequence μ (with appropriate length
restrictions) of anonymised actions is a possible sequence within the LTS. In
Definition 5 above, the opacity of the predicate φμ ensures that the sequence μ
is a possible history of anonymised actions, because it is the only sequence for
which the predicate φμ is false, and so φμ can only be opaque if μ is a possible
sequence.

Theorem 1. Π is O-anonymous w.r.t. A iff it is strongly anonymous w.r.t. A.

Weak anonymity. A natural extension of strong anonymity is weak anonymity2.
This models easily the notion of pseudo-anonymity: actions performed by the
same party can be correlated, but the identity of the party cannot be determined.

Definition 6. Π is weakly anonymous w.r.t. A if π(L(Π)) ⊆ L(Π), for every
permutation π over the set A.

In our framework, we have that

Definition 7. Π is weak-O-anonymous if, for every sequence μ ∈ A∗, the pred-
icate φμ over the runs of Π introduced in Definition 5 is opaque w.r.t. obsd

A.

Theorem 2. Π is weak-O-anonymous w.r.t. A iff it is weak-anonymous
w.r.t. A.

Other observation functions. Dynamic observation functions can model for
example the downgrading of a channel. Before the downgrade nothing can be
seen, after the downgrade the observer is allowed to see all transmissions on
that channel. A suitable formulation would be as follows.

Suppose that A represents the set of all possible messages on a confidential
channel, and δ ∈ L \A represents an action of downgrading that channel. Then
obs(λ) is obtained from λ by deleting each occurrence of ai which is preceded
(directly or indirectly) by an occurrence of δ. In other words, if the downgrade
action appears earlier in the run, then the messages on the channel are observed
in the clear, otherwise nothing is observed.
2 We believe that this formulation of weak anonymity was originally due to Ryan and

Schneider.

86 J.W. Bryans et al.

Orwellian observation functions can model conditional or escrowed anonymity,
where someone can be anonymous when they initially interact with the system,
but some time in the future their identity can be revealed, as outlined below.

Suppose that there are n identities Idi , each identity being capable of perform-
ing actions represented by ai ∈ A. Moreover, α /∈ L represents the encrypted
observation of any of these actions, and ρi ∈ L \ A represents the action of
identity Idi being revealed. Then obs(λ) is obtained from λ by replacing each
occurrence of ai by α, provided that ρi never occurs within λ.

3.2 Non-interference

Opacity can be linked to a particular formulation of non-interference. A discus-
sion of non-interference can be found in [10] and [22]. The basic idea is that labels
are split into two sets, High and Low . Low labels are visible by anyone, whereas
High labels are private. Then, a system is non-interfering if it is not possible
for an outside observer to gain any knowledge about the presence of High labels
in the original run (the observer only sees Low labels). This notion is in fact
a restriction of standard non-interference. It was originally called non-inference
in [19], and is called strong non-deterministic non-interference in [11].

Definition 8. Π satisfies non-inference if L(Π) |Low ⊆ L(Π).

In other words, for any run (s ,λ) of Π , there exists a run (s ′,λ′) such that λ′ is
λ with all the labels in High removed.

The notion of non-interference (and in particular non-inference) is close to
opacity as stated by the two following properties. First, it is possible to transform
certain initial opacity properties into non-inference properties.

Proposition 2. Any initial opacity property involving static observation func-
tions can be reduced to a non-inference property.

A kind of converse result also holds, in the sense that one can transform any
non-inference property to a general opacity property.

Proposition 3. Any non-inference property can be reduced to an opacity
property.

Non-interference in general makes a distinction between public (Low) and pri-
vate (High) messages, and any revelation of a high message breaks the non-
interference property. We believe that the ability to fine-tune the obs function
may make opacity better suited to tackling the problem of partial information
flow, where a message could provide some partial knowledge and it may take a
collection of such leakages to move the system into a compromised state.

3.3 Security Protocols

Opacity was introduced in the context of security protocols in [16]. With one
restriction, the current version of opacity is still applicable to protocols. Namely,

Opacity Generalised to Transition Systems 87

since we require the number of initial states to be finite, the initial choices made
by the various honest agents must come from bounded sets.

To formalise opacity for protocols in the present framework, labels will be
messages defined by the simple grammar

m ::= a | 〈m,m〉 | {m}m

where a ranges over a set A of atomic messages; 〈m1,m2〉 represents the pairing
(concatenation) of messages m1 and m2; and {m1}m2 is the encoding of message
m1 using message m2. A subset K of A is the set of keys, each key k in K having
an inverse denoted by k−1. The notation E � m, where m is a message and E
is a finite set of messages (environment), comes from Dolev-Yao theory [7] and
denotes the fact that m is deducible from E .

Two messages, m1 and m2, are similar for environment E iff E � m1 ∼
m2 where ∼ is the smallest (w.r.t. set inclusion) binary relation satisfying the
following:

a ∈ Atoms
a ∼ a

u1 ∼ u2 v1 ∼ v2

〈u1, v1〉 ∼ 〈u2, v2〉
E � k−1 u ∼ v
{u}k ∼ {v}k

¬ E � k−1 ¬ E � k ′−1

{u}k ∼ {v}k ′

In other words, messages are similar if it is not feasible for an intruder to distin-
guish them using the knowledge E . Such a notion was introduced in [2], where
it was shown to be sound in the computational model, and its generalisation
including the case of equational theories appears in [1].

To state which part of a message is visible from the outside, we will use the
notion of a pattern [2], which adds a new message � to the above grammar, rep-
resenting undecryptable messages. Then, pattern(m,E) is the accessible skeleton
of m using messages in E as knowledge and E � m1 ∼ m2 ⇔ pattern(m1,E) =
pattern(m2,E). It is defined thus:

pattern(a,E) = a
pattern(〈m1,m2〉,E) = 〈pattern(m1,E), pattern(m2,E)〉

pattern({m1}m2 ,E) =

{
{pattern(m1)}m2 if E � m2

� otherwise .

To simplify the presentation, we assume that a security protocol is represented
by an LTS Π = (S ,L,Δ,S0) (for protocols semantics, see [15]). As protocols
are commonly interested in initial opacity (opacity on the value of one of the
parameter, e.g., a vote’s value), the predicate φ will be a suitable subset of S0.
The observation function obs will be orwellian with obs(li ,λ) = pattern(li ,E),
where E is the set of messages appearing in λ. (note that, in the case of a
bounded protocol, an m-orwellian function will be sufficient). Then, opacity of
φ w.r.t. obs is equivalent to the concept introduced in [16].

88 J.W. Bryans et al.

4 Opacity Checking

Opacity is a very general concept and many instantiations of it are undecid-
able. This is even true when LTSs are finite. We will formulate such a property
as Proposition 5 (part 4), but first we state a general non-decidability result.

Proposition 4. Opacity is undecidable.

Proof. We will show that the reachability problem for Turing machines is re-
ducible to (final) opacity. Let TM be a Turing machine and s be its (non-initial)
state. We construct an instance of the final opacity as follows: Π is given by the
operational semantics of TM , the observation function obs is constant, and φ
returns true iff the final state of a run is different from s . Since s is reachable
in TM iff φ is final opaque w.r.t. obs , opacity is undecidable.

It follows from the above proposition that the undecidability of the reachability
problem for a class of machines generating LTSs renders opacity undecidable.
We will therefore restrict ourselves to Petri nets, a rich model of computation
in which the reachability problem is still decidable [21]. Furthermore, Petri nets
are well-studied structures and there is a wide range of tools and algorithms for
their verification.

4.1 Petri Nets

We will use Petri nets with weighted arcs [21], and give their operational se-
mantics in terms of transition sequences.3 Note that this varies slightly from the
one used in [4] where the step sequence semantics allowed multiple transitions
to occur simultaneously. Here, transitions are clearly separated.

A (weighted) net is a triple N = (P ,T ,W) such that P and T are disjoint
finite sets, and W : (T × P) ∪ (P × T) → N. The elements of P and T are
respectively the places and transitions, and W is the weight function of N . In
diagrams, places are drawn as circles, and transitions as rectangles. If W (x , y) ≥
1 for some (x , y) ∈ (T × P) ∪ (P × T), then (x , y) is an arc leading from x to
y. As usual, arcs are annotated with their weight if this is 2 or more. The pre-
and post-multiset of a transition t ∈ T are multisets of places, preN (t) and
postN (t), respectively given by

preN (t)(p) = W (p, t) and postN (t)(p) = W (t , p),

for all p ∈ P . A marking of a netN is a multiset of places. Following the standard
terminology, given a marking M of N and a place p ∈ P , we say that p is marked
if M (p) ≥ 1 and that M (p) is the number of tokens in p. In diagrams, M will
be represented by drawing in each place p exactly M (p) tokens (black dots).
Transitions represent actions which may occur at a given marking and then lead
to a new marking. A transition t is enabled at a marking M if M ≥ preN (t).
3 It should be stressed that the transitions in the Petri net context correspond to the

labels rather than arcs in the LTS framework.

Opacity Generalised to Transition Systems 89

Thus, in order for t to be enabled at M , for each place p, the number of tokens in
p under M should at least be equal to the total number of tokens that are needed
as an input to t , respecting the weights of the input arcs. If t is enabled at M ,
then it can be executed leading to the marking M ′ = M − preN (t) + postN (t).
This means that the execution of t ‘consumes’ from each place p exactly W (p, t)
tokens and ‘produces’ in each place p exactly W (t , p) tokens. If the execution
of t leads from M to M ′ we write M [t〉M ′ and call M ′ reachable from M . A
marked Petri net Σ = (N ,S0) comprises a net N = (P ,T ,W) and a finite set
of initial markings S0. It generates the LTS ΠΣ = (S ,T ,Δ,S0) where S is the
set of all the markings reachable from the markings in S0, T is the set of labels,
and Δ is defined by (M , t ,M ′) ∈ Δ if M [t〉M ′. The language of Σ is that of ΠΣ .

In the case of Petri nets, there are still some undecidable opacity problems.

Proposition 5. The following problems are undecidable for Petri nets:

1. Initial opacity when considering a static observation function.
2. Initial opacity when considering a state-based static observation function.
3. Initial opacity when considering an orwellian observation function even in

the case of finite LTSs generated by marked nets.
4. Opacity when considering a constant observable function even in the case of

finite LTSs generated by a marked nets.

An analysis of the proof of the last result identifies two sources for the complexity
of the opacity problem. The first one is the complexity of the studied property,
captured through the definition of φ. In particular, the latter may be used to
encode undecidable problems and so in practice one should presumably restrict
the interest to relatively straightforward versions of opacity, such as the initial
opacity. The second source is the complexity of the observation function, and
it is presumably reasonable to restrict the interest to some simple classes of
observation functions, such as the static observation functions. This should not,
however, be considered as a real drawback since the initial opacity combined with
an n-orwellian observation function yields an opacity notion which is powerful
enough to deal, for example, with bounded security protocols (section 3.3).

What now follows is a crucial result stating that initial opacity with an
n-orwellian observation function is decidable provided that the LTS generated
by a marked Petri net is finite4. In fact, this result could be generalised to any
finite LTS; i.e., in the case of a finite LTS, initial opacity w.r.t. an n-orwellian
observation function is decidable.

4.2 Approximation of Opacity

As initial opacity is, in general, undecidable when LTSs are allowed to be infinite,
we propose in this section a technique which might allow us to verify it, at least
in some cases, using what we call under/over-opacity.

4 Note that the finiteness of LTS is decidable, and can be checked using the standard
coverability tree construction [21].

90 J.W. Bryans et al.

Definition 9. For i = 1, 2, 3, let Πi be an LTS. Moreover, let obsi be an ob-
servation function and φi a predicate for the runs of Πi such that the following
hold:

(∀ ξ ∈ run(Π1) ∩ φ1) (∃ ξ′ ∈ run(Π2) ∩ φ2) obs1(ξ) = obs2(ξ′)
(∀ ξ ∈ run(Π3) \ φ3) (∃ ξ′ ∈ run(Π1) \ φ1) obs3(ξ) = obs1(ξ′) .

Then φ1 is under/over-opaque (or simply uo-opaque) w.r.t. obs1 if for every
ξ ∈ run(Π2) ∩ φ2 there is ξ′ ∈ run(Π3) \ φ3 such that obs3(ξ) = obs1(ξ′).

Intuitively, Π2 provides an over-approximation of the runs satisfying φ1, while
Π3 provides an under-approximation of those runs that do not satisfy φ1. One
can then show that uo-opacity w.r.t. obs1 implies opacity w.r.t. obs1. Given Π1,
obs1 and φ1, the idea then is to be able to construct an over-approximation and
under-approximation to satisfy the last definition. A possible way of doing this
in the case of marked Petri nets is described next.

Uo-opacity for Petri nets. Suppose that Σ = (N ,S0) is a marked Petri net,
Π1 = ΠΣ , obs1 is a static observation function for Π1 and φ1 ⊆ S0 is an initial
opacity predicate for Π1.

Deriving over-approximation. The over-approximation is obtained by generating
the coverability graphΠ2 of Σ (see [9] for details), starting from the initial nodes
in S0 ∩φ1. The only modification of the original algorithm needed is that in our
setup there may be several starting nodes S0∩φ1 rather than just one. However,
this is a small technical detail. The observation function obs2 is static and defined
in the same way as obs1. The predicate φ2 is true for all the initial nodes S0∩φ1.
Crucially, Π2 is always a finite LTS.

Proposition 6. (∀ ξ ∈ run(Π1) ∩ φ1) (∃ ξ′ ∈ run(Π2) ∩ φ2) obs1(ξ) = obs2(ξ′).

Deriving under-approximation. A straightforward way of finding under-approxi-
mation is to impose a maximal finite capacity max for the places of Σ (for
example, by using the complement place construction), and then deriving the
LTS Π3 assuming that the initial markings are those in S0 \φ1. The observation
function obs3 is static and defined in the same way as obs1. The predicate φ3 is
false for all the initial nodes S0 \ φ1.

Clearly,Π3 is always a finite LTS. However, for some Petri nets with an infinite
reachability graph (as shown later on by our example), this under-approximation
may be too restrictive, even if one takes arbitrarily large bound max . Then, in
addition to using instance specific techniques, one may attempt to derive more
generous under-approximation, in the following way.

We assume that there are some (invisible) transitions inΣ mapped by obs1 to ε
transitions, and propagate the information that a place could become unbounded
due to infinite sequence of invisible transitions. The construction resembles the
coverability graph generation.

As in the case of the reachability graph, the states in Π3 are ω-markings (see
the proof of Proposition 6). Then Π3 is built by starting from the initial states

Opacity Generalised to Transition Systems 91

S0 \ φ1, and performing a depth-first exploration. At each visited ω-marking
M , we find (for example, using a nested call to a coverability graph generation
restricted to the invisible transitions starting from M) whether there exists M ′ >
M reachable from M through invisible transitions only5; then we set M (p) = ω,
for every place p such that M ′(p) > M (p). Note that the above algorithm may
be combined with the capacity based approach and then it always produces a
finite Π3. In general, however, Π3 is not guaranteed to be finite.

It should be pointed out that Π3 generated in this way will not, in general,
be a deterministic LTS, but this does not matter as the only thing we will be
interested in is the language it generates.

Proposition 7. (∀ ξ ∈ run(Π3) \ φ3) (∃ ξ′ ∈ run(Π1) \ φ1) obs3(ξ) = obs1(ξ′).

Deciding uo-opacity. Assuming that we have generated over- and under- ap-
proximations Π2 and Π3, uo-opacity holds iff obs2(L(Π2)) ⊆ obs3(L(Π3)). And
the latter problem is decidable whenever Π2 and Π3 are finite LTSs as it then
reduces to that of inclusion of two regular languages.

5 A Simple Voting Scheme

To illustrate our work, we give an example of a simple voting system. Another
one, inspired by an anonymity requirement required in the chemical industry, is
described in [6].

In this example, we consider a vote session allowing only two votes: 1 and 2. We
then describe a simple voting scheme in the form of a Petri net (see figure 1). The
voting scheme contains two phases. The first one called voting phase (when there
is a token in Voting) allows any new voter to enter the polling station (transition
NV) and vote (transitions V 1 and V 2). Votes are stored in two places Results1
and Results2. A particular voter A is identified, and we formulate our properties
with respect to A. After an indeterminate time, the election enters the counting
phase (when there is a token in Counting, after executing transition C , and no
token in Voting). Then the different votes are counted. Votes for 1 are seen via
transition C1 and vote for 2 via C2. This net has one obvious limitation. At the
end, there still can be some tokens left in places Results1 and Results2 so this
scheme does not ensure that every vote is counted.

We want to verify that the vote cast by A is secret: the two possible initial
markings are {Voting, 1} and {Voting, 2}. We prove that it is impossible to detect
that “1” was marked (a symmetric argument would show that it is impossible
to detect whether “2” was marked). The observation function is static and only
transitions C1 and C2 are visible, i.e., obs(C1) = C1, obs(C2) = C2 and
obs(t) = ε for any other transition t .

To verify opacity, we will use the under/over approximation method. The cov-
erability graph (over-approximation) can be computed (see figure 1) using, for

5 This search does not have to be complete for the method to work, however, the more
markings M ′ we find, the better the overall result is expected to be.

92 J.W. Bryans et al.

NV

V1 V2

C

C1 C2

A1 A2

Waiting

Results1 Results2

Voting

Counting

1 2

0

1

tA1

16

tC

20

tNV

2

tC

8

tNV

17

tNV

tNV

tA1

19

tC

21

tV1

25

tV2

3

tC1

6

tNV

tNV

7

tC 9

tV1

13

tV2

4

tNV tC1 tNV

5

tNV

tNV

tC1

tNV

tNV tV1

10

tC

11

tV2

tNV tV2

tV1

14

tC

tC1 tNV tNV tV1 tV2

12

tC

tC1 tC2 tNV

tC2 tNV

15

tC1

tC2 tNV

18

tNV

tNV

tNV

tA1

tNV tV1

22

tC

23

tV2tA1

tNV tV2

tV1

26

tC

tC1 tNV

tA1

tNV tV1 tV2

24

tC

tC1 tC2 tNV

tC2 tNV

Fig. 1. Net for the voting system, and below its coverability graph

example, Tina [25]. After application of the observation function and simplifica-
tion, we obtain that obs2(L(Π2)) = {C1,C2}∗(see section 4.2 for the definition
of Π2.)

However, the simple under approximation using bounded capacity places will
not work in this case, as for any chosen maximal capacity max , the language
L(Π3) will be finite whereas obs2(L(Π2)) is infinite. Thus, we use the second
under approximation technique. The following array represents the reachable
states of the system starting from marking {Voting, 2} using this technique.

Waiting Voting Results1 Results2 1 2 Counting
A ω 1 ω ω 0 1 0
B ω 1 ω ω 0 0 0
C ω 0 ω ω 0 1 1
D ω 0 ω ω 0 0 1

Opacity Generalised to Transition Systems 93

The behaviour of this reachability graph, i.e. obs3(L(Π3)), is simple:

C1C2 C1 C2

A

C

B

D

ε

εε

Thus, the under-approximation is in this case: obs3(L(Π3)) = {C1,C2}∗, and
so obs2(L(Π2)) ⊆ obs3(L(Π3)) holds. We can now conclude that opacity of φ
w.r.t. obs is verified and so the vote cast by A is kept secret.

6 Related Work

Concepts similar to opacity have been studied using epistemic logics, or logics of
knowledge [8]. These logics include a “knowledge” operator, representing the case
where an agent knows a fact, and are particularly suitable for reasoning about se-
curity within a multi-agent context [17, 12, 3]. The semantics can be given within
a “possible worlds” model: an agent knows a fact in a given world if it is true in
every world that the agent considers possible. Opacity appears to be closely re-
lated to this knowledge operator, in that a property is opaque when the observer
cannot be sure that it is true (see also below). That is, there is a world (a high
level trace) that the observer considers possible, in which the fact does not hold.
In [26] the notion of ignorance is developed, where an agent is ignorant of a fact φ
when it cannot say for certain either that φ holds or that ¬ φ holds. In our terms,
an agent would be ignorant of φ if both φ and ¬ φ were opaque.

There is a clear and strong relationship between our work and that contained
in [14], and through it also with that in [8]. For example, final-opacity could be
understood, using the terminology of [14], in the following way. To start with,
we assume that an agent i is modelled by our obs function and, for every point
(r ,m), we have ri(m) = obs(r ,m). In other words, the i-th agent (in the sense
of [14]) is observing the system. To model predicates within our approach, we
then use information functions of [14], saying that f is such a function and, for
every point (r ,m), f (r ,m) returns a true or false value which only depends on
the m-th state of the run r . Then, applying Definition 3.3 of [14], results in
the following rendering of our notion of final-opacity: “for every point (r ,m)
there is another point (r ′,m ′) such that obs(r ,m) = obs(r ′,m ′) and f (r ,m) =
¬ f (r ′,m ′)”. Indeed, this looks very similar to the definition used by us, but is
in fact strictly stronger, since our definition should correspond to the following:
“for every point (r ,m) with f (r ,m) = true, there is another point (r ′,m ′) such
that obs(r ,m) = obs(r ′,m ′) and f (r ′,m ′) = false”. And the notion based on
Definition 3.3 of [14] is basically equivalent to opacity of both f and f ′ = ¬ f . We
therefore feel that there is no straightforward way of embedding our approach
within that proposed in [14] (and so also [8]). We also feel that the basic reason

94 J.W. Bryans et al.

behind this is that our notion of information hiding is ‘asymmetric’ in a sense
that different values are obscured in possibly different ways. To make this more
concrete, we could propose a slight modification of the definition from [14] along
the following lines:

Assume additionally that for every v in the range of f there exists pos-
sibly empty set Mask(v) of values in the domain of f . Then, if f is a
j -information function, then agent j maintains f -secrecy w.r.t. i in sys-
tem R if, for all points (r ,m) and values v ∈ Mask(f (r ,m)) there is a
point (r ′,m ′) such that ri(m) = r ′

i (m
′) and f (r ′,m ′) = v .

Intuitively, Mask(v) provides sufficient obscurity from the point of view of agent
j about the actual value of v . In our case we could then set Mask(true) = false
and Mask(false) = ∅ (the latter to indicate that we do not care about the
states where our predicate is false). And final-opacity would then be expressible
using the modified definition. Our hypothesis is that such a modification consti-
tutes an interesting true weakening of the security notion discussed in [14], and
consequently it deserves an investigation in its own right.

7 Conclusions

We have presented a general definition of opacity that extends previous work.
This notion is no longer bound to the Petri net formalism and applies to any
labelled transition system. However, restricting ourselves to initial opacity in
the case of Petri nets allows us to find some decidability results. Furthermore,
in this general model we can show how opacity relates to other information flow
properties such as anonymity or non-inference.

Non-decidability results show that the opacity problem is a complex one. Its
complexity is related to the complexity of the checked property, the complexity
of the adversary’s observational capabilities and the complexity of the system.
The first point can be addressed by considering initial opacity which is still very
expressive. The second one can be simplified by considering only n-orwellian
observation functions. To solve the third problem, we can restrict ourselves to
finite automata but this causes us to lose significant expressive power.

In the case of infinite Petri nets, over- and under- approximating gives a way
of checking opacity. This technique works well in the case of our voting example.
We intend in future work to find a better abstraction for Petri nets and some
well suited abstractions for other formalisms.

Some of the work done within epistemic logic has been with a view to model
checking (see [18, 20, 24] for recent examples). Automatic verification is also an
important goal of our work, and so exploring the connections between epistemic
logic and opacity should prove a strong basis for further research.

Acknowledgments

This research was supported by DSTL, the EPSRC DIRC, GOLD and SCREEN
projects, theRNTLprojectPROUVE-03V360, and theACIprojectROSSIGNOL.

Opacity Generalised to Transition Systems 95

References

1. M.Abadi and V.Cortier: Deciding Knowledge in Security Protocols under Equa-
tional Theories. In: ICALP (2004)

2. M.Abadi and P.Rogaway: Reconciling two Views of Cryptography (The computa-
tional soundness of formal encryption). In: IFIP TCS2000 (2000)

3. P.Bieber: A Logic of Communication in a Hostile Environment. In: CSFW (1990)
4. J.W.Bryans, M.Koutny and P.Y.A.Ryan: Modelling Opacity using Petri Nets.

ENTCS 121 (2005)
5. J.W.Bryans, M.Koutny and P.Y.A.Ryan: Modelling Dynamic Opacity using Petri

Nets with Silent Actions. In: FAST (2004)
6. J.W.Bryans, M.Koutny, L.Mazaré and P.Y.A.Ryan: Opacity Generalised to Tran-

sition Systems. CS-TR 868, University of Newcastle (2004)
http://www.cs.ncl.ac.uk/research/pubs/trs/abstract.php?number=868

7. D.Dolev and A.C.Yao: On the Security of Public Key Protocols. IEEE Transactions
on Information Theory 29 (1983)

8. R.Fagin, J.Y.Halpern, Y.Moses and M.Y.Vardi: Reasoning about Knowledge. MIT
press (1995)

9. A.Finkel: The Minimal Coverability Graph for Petri Nets. LNCS 674 (1993)
10. R.Focardi and R.Gorrieri: A Taxonomy of Trace-Based Security Properties for

CCS. In: CSFW (1994)
11. R.Focardi and R.Gorrieri: Classification of Security Properties: Information flow.

LNCS 2171 (2000)
12. J.Glasgow, G.Macewen and P.Panangaden: A Logic for Reasoning about Security.

ACM Transactions on Computer Systems 10 (1992)
13. Y. Lakhnech and L. Mazaré: Probabilistic Opacity for a Passive Adversary and

its Application to Chaum’s Voting Scheme. Verimag Technical Report 2005-04,
(2005).

14. J.Y.Halpern and K.O’Neill: Anonymity and Information Hiding in Multiagent Sys-
tems. In: CSFW (2003)

15. F.Jacquemard, M.Rusinowitch and L.Vigneron: Compiling and Verifying Security
Protocols. In: LPAR (2000)

16. L.Mazaré: Using Unification For Opacity Properties. In: WITS (2004)
17. L.Moser: A Logic of Knowledge and Belief for Reasoning about Security. In: CSFW

(1989)
18. W.Nabialek, A.Niewiadomski, W.Penczek, A.Polórla and M.Szreter: Verics 2004:

A Model Checker of Real-Time and Multi-agent Systems. In: CS&P (2004)
19. C.O’Halloran: A Calculus of Information Flow. In: ESORICS (1990)
20. F.Raimondi and A.Lomuscio: Verification of Multiagent Systems via Ordered Bi-

nary Decision Diagrams: an Algorithm and its Implementation. TR-04-01, King’s
College (2004)

21. W.Reisig and G.Rozenberg (Eds.): Lectures on Petri Nets. LNCS 1491 & 1492
(1998)

22. P.Y.A.Ryan: Mathematical Models of Computer Security. LNCS 2171 (2000)
23. S.Schneider and A.Sidiropoulos: CSP and Anonymity. In: ESORICS (1996)
24. S.van Otterloo, W.van der Hoek and M.Woolridge: Model Checking a Knowledge

Exchange Scenario. In: IJCAI (2003)
25. Time Petri Net Analyzer. http://www.laas.fr/tina/ (2004)
26. W.van der Hoek and A.Lomuscio: A Logic for Ignorance. ENTCS 85 (2004)

Unifying Decidability Results on Protection
Systems Using Simulations�

Constantin Enea

Faculty of Computer Science, “Al.I.Cuza” University of Iasi, Romania
cenea@infoiasi.ro

Abstract. We investigate two possible definitions of simulation between
protection systems. The resulting simulation relations are used to unify
the proofs of decidability of the safety problem for several classes of
protection systems from the literature, notably the take-grant systems
([4]) and the MTAM systems with acyclic creation graphs([9]).

1 Introduction and Preliminaries

Access control is one of the facets of the implementation of security policies. In
access control models, the security policy is implemented by an assignment of
access rights to the objects composing the system and by the rules allowing the
creation and/or destruction of new objects and the modification of their access
rights.

A powerful model of access control systems is the access matrix model [2].
In this model, the protection state of the system is characterized by the set of
access rights that different entities (subjects or objects) have over other entities
and by the set of commands which may change this state, by creating/destroying
subjects or objects or by adding/removing rights. The expressive power of this
model is sufficiently large to include other models like take-grant systems ([4]),
SPM systems ([8]), ESPM systems ([1]), TAM systems ([9]), etc.

The basic decision problem in an access matrix model is the safety problem:
given two entities A and B and a right R, decide whether the system can evolve
into a state in which A has right R over B. Very early, it was shown that this
problem is undecidable ([2]) and remains like that, even for systems without
subject/object destruction ([3]). Consequently, a number of restrictions have
been proposed [2, 4, 9] for which the safety problem is decidable.

In this paper we propose two notions of simulation between protection systems
that allow us to define a class of access control models for which the safety
problem is decidable. We prove that several classes of protection systems from the
litterature fall into this class, notably the take-grant systems and the monotonic
typed access matrix systems with an acyclic creation graph.

� The research reported in this paper was partially supported by the program ECO-
NET 08112WJ/2004-2005 and by the National University Research Council of
Romania, grants CNCSIS 632/28/2004 and CNCSIS 632/50/2005.

T. Dimitrakos et al. (Eds.): FAST 2005, LNCS 3866, pp. 96–111, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Unifying Decidability Results on Protection Systems Using Simulations 97

Our contributions consist in defining such simulation relations on access ma-
trix models of protection systems and using them to unify and clarify the proof
of decidability of the safety problem for the classes of protection systems above.
As to our knowledge, this is the first attempt to define simulation relations on
such models. We also obtain a slight generalization of the decidability result in
[9] as we will see in Subsect. 5.1.

The paper is organized as follows: in the second section we remind the notion
of a protection system, in the access matrix presentation of [2]. We then define
in Sect. 3 and 4, two notions of simulation between protection systems and show
how we can use them to solve the safety problem. Also, these two simulation
relations allow us to define, in the fifth section, a class of protection systems for
which the safety problem is decidable. We then prove that the mono-operational,
the take-grant, and the monotonic typed access matrix systems with acyclic cre-
ation graphs fall into this class. The last section contains some conclusions.

2 Protection Systems

We use protection systems modeled as in [2]. Here, the protection state of a
system is modeled by an access matrix with a row for each subject and a column
for each object. The cells hold the rights that subjects have on objects.

A protection system is defined over a finite set of generic rights and contains
commands that specify how the protection state can be changed. The commands
are formed of a conditional part which tests for the presence of rights in some cells
of the access matrix and an operational part which specifies the changes made
on the protection state. The changes are specified using primitive operations for
subject/object creation and destruction and for entering/removing rights.

Definition 2.1. A protection scheme is a tuple S = (R,C), where R is a finite
set of rights and C is a finite set of commands of the following form:

command c(x1,x2, · · · ,xn)
if r1 in [xs1 ,xo1]

· · ·
rk in [xsk

,xok
]

then
op1
· · ·
opm

Above, c is a name, x1,x2, · · · ,xn are formal parameters and each opi is one of
the following primitive operations: enter r into [xs,xo], delete r from [xs,xo],
create subject xs, create object xo, destroy subject xs and destroy object xo.
Also, r, r1, · · · rk are rights from R and s, s1,· · ·, sk, o, o1,· · ·, ok are integers
between 1 and n.

We will call a command mono-operational if it contains only one primitive op-
eration and monotonic if it does not contain “destroy subject”, “destroy object”
and “delete” operations.

98 C. Enea

Definition 2.2. A configuration over R is a tuple Q = (S,O,P), where S is the
set of subjects, O the set of objects, S ⊆ O and P : S ×O → P(R) is the access
matrix. We will denote by Cf(R) the set of configurations over R.

As we can see, all subjects are also objects. This is a very natural assumption
since, for example, processes in a computer system may be accessed by, or may
access other processes. The objects from O − S will be called pure objects.

Definition 2.3. A protection system is a tuple ψ = (R,C,Q0), where (R,C) is a
protection scheme and Q0 a configuration over R, called the initial configuration.
A protection system is mono-operational (monotonic) if all commands in C are
mono-operational (monotonic).

We will call the subjects (objects) from S0 (O0) initial subjects (objects).
The six primitive operations mean exactly what their name imply (for details

the reader is reffered [2]). We will denote by ⇒op the application of a primitive
operation op in some configuration.

Definition 2.4. Let ψ = (R,C,Q0) be a protection system, Q and Q′ two
configurations over R and c(x1, · · ·xn) ∈ C a command like in Definition 2.1.
We say that Q′ is obtained from Q in ψ, applying c with the actual arguments
o1,· · ·, on, denoted by Q→c(o1,···,on)

ψ Q′, if:

– ri ∈ P (osi , ooi), for all 1 ≤ i ≤ k;
– there exist configurations Q1,· · ·, Qm such that Q ⇒op′

1
Q1 ⇒op′

2
· · · ⇒op′

m

Qm and Qm = Q′ (op′i is the primitive operation obtained after substituting
x1,· · ·,xn with o1,· · ·,on).

When the command c and the actual arguments o1,· · ·, on are understood from
the context, we will write only Q→ψ Q′. We consider also→∗

ψ, the reflexive and
transitive closure of →ψ. We say that a configuration Q over R is reachable in
ψ if Q0 →∗

ψ Q.
For protection systems like above, we consider the following safety problem:

given s an initial subject, o an initial object and a right r, decide if a state in
which s has right r over o is reachable. This is a less general safety problem than
the one in [2], but it is more natural and used more frequently in the literature
([1, 4, 8, 9]).

Definition 2.5. Let ψ = (R,C,Q0 = (S0,O0,P0)) be a protection system,
s ∈ S0, o ∈ O0 and r ∈ R. A configuration Q = (S,O,P) over R is called leaky
for (s, o, r) if s ∈ S, o ∈ O and r ∈ P (s, o).

We say that ψ is leaky for (s, o, r) if there exists a reachable configuration leaky
for (s, o, r). Otherwise, ψ is called safe for (s, o, r), denoted by ψ � (s, o, r).

Now we can define the safety problem as follows:
Safety problem (SP)

Instance: protection system ψ, s ∈ S0, o ∈ O0, r ∈ R;
Question: is ψ safe for (s, o, r)?

Unifying Decidability Results on Protection Systems Using Simulations 99

3 Simulations

The problem to decide if a protection system is safe was shown to be undecidable
in [2], by designing a protection system that simulates a Turing machine. The
most important source of undecidability is the creation of objects, which makes
the system infinite-state. Hence, techniques to reduce the state space of the
system are well suited. In this paper we will refer to an abstraction technique,
namely the simulation relation ([6]).

Definition 3.1. Let ψ1 = (R1,C1,Q
1
0 = (S1

0 ,O1
0,P

1
0)) and ψ2 = (R2,C2,Q

2
0 =

(S2
0 ,O2

0 ,P
2
0)) be two protection systems. Also, let ρo ⊆ O1

0×O2
0 and ρr ⊆ R1×R2

be two relations. For any Q1 = (S1,O1,P1) ∈ Cf(R1) and Q2 = (S2,O2,P2) ∈
Cf(R2), we say that Q2 simulates Q1 w.r.t. ρo and ρr, denoted by Q1 ≺ρo,ρr

Q2, if:

1. ρo(S1 ∩ S1
0) ⊆ S2 ∩ S2

0 ;
2. ρo(O1 ∩O1

0) ⊆ O2 ∩O2
0 ;

3. for any s ∈ S1 ∩ S1
0 , o ∈ O1 ∩O1

0 and r ∈ R1, if r ∈ P1(s, o) then there exist
s′ ∈ ρo(s), o′ ∈ ρo(o) and r′ ∈ ρr(r) such that r′ ∈ P2(s′, o′).

Above, ρ(s) = {s′|ρ(s, s′)}, for any relation ρ.
The relations ρo and ρr are used to relate the “access powers” of subjects from

two different protection systems. For example, having right r over an object o in
the first system is considered to be the same as having a right r′ ∈ ρr(r) over an
object o′ ∈ ρo(o) in the second system. In this context, a configuration Q2 from
ψ2 simulates a configuration Q1 from ψ1, if every initial subject from Q2 has at
least the same “access power” as the initial subject from Q1 to which is related
by ρo.

The simulation relation we define next, is more general than the one in [6],
because one transition step in the first system can be simulated by zero, one or
more transition steps in the second system.

Definition 3.2. Let ψ1 = (R1,C1,Q
1
0) and ψ2 = (R2,C2,Q

2
0) be two protection

systems, and ρo, ρr relations like above. We say that H ⊆ Cf(R1)× Cf(R2) is
a simulation relation from ψ1 to ψ2 w.r.t. ρo and ρr if for any Q1 ∈ Cf(R1) and
Q2 ∈ Cf(R2), H(Q1,Q2) implies that:

1. Q1 ≺ρo,ρr Q2;
2. for any Q′

1 ∈ Cf(R1) such that Q1 →ψ1 Q
′
1 there exists Q′

2 ∈ Cf(R2) such
that Q2 →∗

ψ2
Q′

2 and H(Q′
1,Q

′
2).

Definition 3.3. Let ψ1 = (R1,C1,Q
1
0) and ψ2 = (R2,C2,Q

2
0) be two protection

systems, and ρo, ρr relations like above. We say that ψ2 simulates ψ1 w.r.t. ρo

and ρr, denoted by ψ1 ≺ρo,ρr ψ2, if there exists a simulation relation H from ψ1
to ψ2 w.r.t. ρo and ρr such that H(Q1

0,Q
2
0). We write ψ1 ≺ ψ2 if there exist ρo

and ρr like above such that ψ1 ≺ρo,ρr ψ2.

The usefulness of the simulation relation is proved by the next theorem. We will
show that solving some instances of SP in a protection system that simulates
another may lead to solving an instance of SP in the initial system.

100 C. Enea

Theorem 3.1. Let ψ1 = (R1,C1,Q0 = (S0,O0,P0)) and ψ2 = (R2,C2,Q
′
0 =

(S′
0,O

′
0,P

′
0)) be two protection systems, and ρo, ρr two relations like above. If

ψ1 ≺ρo,ρr ψ2, then:[
(∀s′ ∈ ρo(s))(∀o′ ∈ ρo(o))(∀r′ ∈ ρr(r))(ψ2 � (s′, o′, r′))

]
⇒
[
ψ1 � (s, o, r)

]
,

for any s ∈ S0, o ∈ O0 and r ∈ R1.

Proof. Suppose by contradiction that ψ1 is not safe for (s, o, r). Then, there
exists the follwing computation in ψ1:

Q0 →ψ1 Q1 →ψ1 · · · →ψ1 Ql,

such that Ql is leaky for (s, o, r).
ψ1 ≺ρo,ρr ψ2 implies that there exists a simulation relation H from ψ1 to ψ2

such that H(Q0,Q
′
0). Hence, we have in ψ2 the following computation:

Q′
0 →∗

ψ2
Q′

1 →∗
ψ2
· · · →∗

ψ2
Q′

l,

such that H(Qi,Q
′
i) for all 0 ≤ i ≤ l.

Consequently, Ql ≺ρo,ρr Q
′
l and, since r ∈ Pl(s, o), we obtain that there exists

s′ in ρo(s), o′ in ρo(o) and r′ in ρr(r) such that r′ ∈ P ′
l (s

′, o′), where Pl is the
access matrix of Ql and P ′

l the access matrix of Q′
l. So, Q′

l is leaky for (s′, o′, r′)
and ψ2 is not safe for (s′, o′, r′), contradicting the supposition made above. �
The result above implies that ψ2 is a weak-preserving abstraction of ψ1 in the
sense that only positive answers to instances of SP in ψ2 may lead to solving
instances of SP in ψ1.

We will now prove that in some conditions, the existence of simulation rela-
tions in both senses may transform ψ2 into a strong-preserving abstraction of ψ1.
This means that, also negative answers to instances of SP in ψ2 are important
for solving instances of SP in ψ1.

We say that a relation ρ ⊆ D1 ×D2 is injective if ρ(x1) ∩ ρ(x2) = ∅, for any
x1, x2 ∈ D1.

Corollary 3.1. Let ψ1 = (R1,C1,Q0 = (S0,O0,P0)) and ψ2 = (R2,C2,Q
′
0 =

(S′
0,O

′
0,P

′
0)) be two protection systems, and ρo, ρr two relations like above.

If ψ1 ≺ρo,ρr ψ2, ψ2 ≺ρ−1
o ,ρ−1

r
ψ1 and ρo, ρr are injective then:[

(∀s′ ∈ ρo(s))(∀o′ ∈ ρo(o))(∀r′ ∈ ρr(r))(ψ2 � (s′, o′, r′))
]
⇔
[
ψ1 � (s, o, r)

]
,

for any s ∈ S0, o ∈ O0 and r ∈ R1.

Proof. The result is immediate, applying Theorem 3.1 for ψ1 ≺ρo,ρr ψ2 and
ψ2 ≺ρ−1

o ,ρ−1
r
ψ1. �

Next, we exemplify the use of simulation relations in the analysis of protection
systems. We will show that an weak-preserving abstraction of a protection sys-
tem can be obtained by adding commands or by removing the non-monotonic
primitive operations from all the commands. Then, for monotonic protection sys-
tems, we prove that an abstraction can be obtained by splitting each command
into mono-operational commands.

Unifying Decidability Results on Protection Systems Using Simulations 101

Example 3.1. Let ψ = (R,C,Q0 = (S0,O0,P0)) and ψ′ = (R,C′,Q0) be two
protection systems such that C ⊆ C′.

We say that two configurations Q = (S,O,P) and Q′ = (S′,O′,P ′) from
Cf(R) are equal up to names, denoted by Q ≈ Q′, if:

– O ∩O0=O′ ∩O0;
– there exists a bijection φ : O → O′ such that:

• φ(o) = o, for every o ∈ O ∩O0 (φ preserves initial objects);
• φ(S) = S′ (φ preserves subjects);
• r ∈ P (s, o) ⇔ r ∈ P ′(φ(s),φ(o)), for any s ∈ S, o ∈ O and r ∈ R.

It can be easily proved that ψ ≺idO0 ,idR ψ′, considering the simulation relation
H ⊆ Cf(R)× Cf(R), given by H(Q,Q′) iff Q ≈ Q′.

Example 3.2. Let ψ = (R,C,Q0 = (S0,O0,P0)) be a protection system. We
suppose w.l.o.g. that the commands in C do not delete a right that they have
just entered or destroy an object that they have just created. We will prove that
ψ is simulated by its monotonic restriction, i.e., by the system which acts like ψ
but does not destroy any object and does not delete any right.

Let ψm = (R,Cm,Q0), where Cm is the set of commands obtained from the
ones in C, by removing all non-monotonic primitive operations.

We can prove that ψ ≺idO0 ,idR ψm, considering the following relationH : given
Q = (S,O,P) and Q′ = (S′,O′,P ′) from Cf(R), we have H(Q,Q′) if:

– O ∩O0 ⊆ O′ ∩O0;
– there exists an injection φ : O→ O′, such that:

• φ(o) = o, for every o ∈ O ∩O0;
• φ(S) ⊆ S′;
• r ∈ P (s, o) ⇒ r ∈ P ′(φ(s),φ(o)), for any s ∈ S, o ∈ O and r ∈ R.

Example 3.3. Let ψ = (R,C,Q0) be a monotonic protection system. We can
prove that ψ is simulated by the mono-operational system that results by split-
ting all the commands from C into mono-operational commands.

To this end, we will reuse the relation H defined by H(Q,Q′) if Q ≈ Q′ and
prove that it is a simulation from ψ to ψmo w.r.t. idO0 and idR.

4 Quasi-bisimulations

We present another type of simulation relation between protection systems, that
resembles to a bisimulation relation ([7]) but does not induce an equivalence
relation over protection systems. That is why we will call this relation a quasi-
bisimulation. It differs from the simulation relation presented earlier by the fact
that initial subjects must have the same “access power” and we must be able
to simulate one step from a protection system with a sequence of zero or more
steps in the other system.

102 C. Enea

Definition 4.1. Let ψ1 = (R1,C1,Q
1
0 = (S1

0 ,O1
0,P

1
0)) and ψ2 = (R2,C2,Q

2
0 =

(S2
0 ,O2

0 ,P
2
0)) be two protection systems. Also, let ρo ⊆ O1

0×O2
0 and ρr ⊆ R1×R2

be two relations. For any Q1 = (S1,O1,P1) ∈ Cf(R1) and Q2 = (S2,O2,P2) ∈
Cf(R2), we say that Q2 is quasi-bisimilar to Q1 w.r.t. ρo and ρr, denoted by
Q1 "ρo,ρr Q2, if:

1. ρo(S1 ∩ S1
0) ⊆ S2 ∩ S2

0 ;
2. ρo(O1 ∩O1

0) ⊆ O2 ∩O2
0 ;

3. For any s ∈ S1 ∩ S1
0 , o ∈ O1 ∩ O1

0 and r ∈ R1, r ∈ P1(s, o) iff there exist
s′ ∈ ρo(s), o′ ∈ ρo(o) and r′ ∈ ρr(r) such that r′ ∈ P2(s′, o′).

Definition 4.2. Let ψ1 = (R1,C1,Q
1
0) and ψ2 = (R2,C2,Q

2
0) be two protection

systems, and ρo, ρr relations like above. We say that B ⊆ Cf(R1)×Cf(R2) is a
quasi-bisimulation relation from ψ1 to ψ2 w.r.t. ρo and ρr if for any Q1 ∈ Cf(R1)
and Q2 ∈ Cf(R2), B(Q1,Q2) implies that:

1. Q1 "ρo,ρr Q2

2. for any Q′
1 ∈ Cf(R1) such that Q1 →ψ1 Q

′
1 there exists Q′

2 ∈ Cf(R2) such
that Q2 →∗

ψ2
Q′

2 and B(Q′
1,Q

′
2).

3. for any Q′
2 ∈ Cf(R2) such that Q2 →ψ2 Q

′
2 there exists Q′

1 ∈ Cf(R1) such
that Q1 →∗

ψ1
Q′

1 and B(Q′
1,Q

′
2).

Definition 4.3. Let ψ1 = (R1,C1,Q
1
0) and ψ2 = (R2,C2,Q

2
0) be two protection

systems, and ρo, ρr relations like above. We say that ψ2 is quasi-bisimilar to ψ1
w.r.t. ρo and ρr, denoted by ψ1 "ρo,ρr ψ2, if there exists a quasi-bisimulation
relationB from ψ1 to ψ2 w.r.t. ρo and ρr, such that B(Q1

0,Q
2
0). We write ψ1 " ψ2

if there exist ρo and ρr like above such that ψ1 "ρo,ρr ψ2.

Next, we will prove the usefulness of the quasi-bisimulations, showing that if we
have two protection systems such that ψ1 " ψ2, solving an instance of SP in ψ1
is equivalent with solving one or more instances of SP in ψ2. This could still be
more efficient if the state space of ψ2 is much smaller than the one of ψ1.

Theorem 4.1. Let ψ1 = (R1,C1,Q0 = (S0,O0,P0)) and ψ2 = (R2,C2,Q
′
0 =

(S′
0,O

′
0,P

′
0)) be two protection systems, and ρo, ρr two relations like above. If

ψ1 "ρo,ρr ψ2, then:[
(∀s′ ∈ ρo(s))(∀o′ ∈ ρo(o))(∀r′ ∈ ρr(r))(ψ2 � (s′, o′, r′))

]
⇔
[
ψ1 � (s, o, r)

]
,

for any s ∈ S0, o ∈ O0 and r ∈ R1.

Proof. Similar to the proof of Theorem 3.1. �

5 A Class of Decidable Protection Systems

Definition 5.1. A protection system ψ = (R,C,Q0) is called a finite protection
system if the commands from C do not contain “create” primitive operations.

Unifying Decidability Results on Protection Systems Using Simulations 103

It is well known ([5]) that the safety problem for finite protection systems is
decidable.

Definition 5.2. We define Dec to be the class of protection systems that has
the following properties:

– if ψ is a finite protection system then ψ ∈ Dec;
– if ψ′ ∈ Dec and ψ ≺ρo,ρr ψ′, ψ′ ≺ρ−1

o ,ρ−1
r

ψ, for some ρo and ρr injective
relations, then ψ ∈ Dec;

– if ψ′ ∈ Dec and ψ " ψ′ then ψ ∈ Dec.

By Corollary 3.1 and Theorem 4.1, we obtain that the safety problem for the
protection systems from Dec is decidable.

We will show that it contains three other well-known classes of protection
systems for which the safety problem is decidable: MTAM systems with acyclic
creation graphs([9]), mono-operational protection systems([2]) and take-grant
systems([4]).

By showing that these three classes of protection systems are included in
Dec, we unify their proof of decidability for the safety problem. We show that
the safety problem is decidable because these protection systems are simulated
by systems that have all the needed objects created even from the initial config-
uration and no commands that can create objects afterwards.

5.1 MTAM Systems with Acyclic Creation Graphs

In [9], the authors propose an extension of the access matrix model, the typed
access matrix model (TAM, for short), that assigns a type to each object of a
configuration.

Formally, a TAM system is a tuple τ = (R,T ,C,Q0 = (S0,O0, t0,P0)), where
R is a finite set of rights, T a finite set of types, C a finite set of typed commands
and Q0 the initial configuration.

Configurations are tuples Q = (S,O, t,P), where S, O and P are as before,
and t : O → T is a function that assigns a type to every object.

The typed commands differ from the commands of a protection system defined
as in Sect. 2, by the fact that they test the type of each argument and the
primitive operations used to create objects are: “create subject s of type t” and
“create object o of type t”.
τ is called a monotonic TAM system (MTAM, for short) if the commands

from C do not contain operations that delete rights or destroy objects.
We say that an MTAM system is in canonical form if the “create” commands

(commands that contain at least one “create” primitive operation) are uncon-
ditional (the conditional part is empty). In [9] was proved that MTAM systems
can always be considered to be in canonical form.

If c is a typed command like in Fig. 1, ti is called a child type of c if “create
subject xi of type ti” or “create object xi of type ti” appears in c. Otherwise, ti
is called a parent type of c.

104 C. Enea

command c(x1 : t1, x2 : t2, · · · , xn : tn) command γ(c)(x1, x2, · · · , xn)
if r1 in [xs1 , xo1]

· · ·
rk in [xsk , xok]

then
op1

· · ·
opm

if ti1 in [xi1 , xi1]
· · ·
til in [xil , xil]
r1 in [xs1 , xo1]
· · ·
rk in [xsk , xok]

then
op′

1

· · ·
op′

m′

Fig. 1. The transformation γ

The creation graph of a TAM system τ = (R,T ,C,Q0) is a directed graph
with the set of vertices T and an edge from t1 to t2 if there exists a command
c ∈ C such that t1 is a parent type of c and t2 a child type of c.

The safety problem SP can be defined analogously for TAM systems.
The main decidability result of [9] is:

Theorem
SP for MTAM systems with acyclic creation graphs is decidable.

A TAM system τ = (R,T ,C,Q0 = (S0,O0, t0,P0)) can be described using a
protection system ψτ = (R ∪ T ,C′,Q′

0 = (O0,O0,P
′
0)), where:

P ′
0(s, o) =

⎧⎪⎪⎨⎪⎪⎩
P0(s, o), if s = o and s ∈ S0
P0(s, o) ∪ {t0(s)}, if s = o and s ∈ S0
{t0(s)}, if s = o and s ∈ O0 − S0
∅, otherwise.

and C′ = {γ(c)|c ∈ C}, with γ the transformation from Fig. 1 (i1,· · ·, il are
integers between 1 and n such that xil

does not appear in a “create” operation).
The primitive operations of γ(c) are obtained by copying the ones from c,

excepting the case of a “create subject s of type t” or “create object s of type
t” primitive operation, when we add in γ(c) two operations: “create subject s”
or “create object s” and “enter t in [s,s]”.

From now on, when we say TAM systems, we mean protection systems like
ψτ . Hence, an MTAM system is in canonical form if in the conditional part of
every “create” command we test only rights from T .

In the following, we will obtain using quasi-bisimulations, the decidability
of the safety problem for a class of protection systems more general than the
MTAM systems with acyclic creation graphs.

If ψ = (R,C,Q0) is a protection system, denote by Tψ(X) the set of terms
defined over the set of variables X and the signature Σψ, where

Σψ = {ci of arity n | c(x1, · · · ,xn) ∈ C and 1 ≤ i ≤ n} ∪ {o of arity 0 | o ∈ O0}
∪{∅ of arity 0}

Unifying Decidability Results on Protection Systems Using Simulations 105

By Tψ we will denote the set of ground terms.
For a command c(x1, · · · ,xn) ∈ C, we say that xi, for some 1 ≤ i ≤ n, is

a child argument of c if “create subject xi” or “create object xi” appears in
c. Otherwise, xi is a parent argument of c. We define the relation ≡Q over the
objects of a configuration Q = (S,O,P) ∈ Cf(R) as follows:

o ≡Q o if o ∈ O0;
o ≡Q o′ if o and o′ were created as the i-th argument of a command c

applied with op1 , · · · , opm as parent arguments for o
and with o′p1

, · · · , o′pm
as parent arguments for o′,

and opj ≡Q o′pj
, for all 1 ≤ j ≤ m.

(p1, · · · , pm are the indexes of the parent arguments of c)

The fact that o was created as the i-th argument of a command c applied with
op1 , · · · , opm as parent arguments, can be memorized in a configuration Q in
many ways. For example, we can modify the system ψ by adding a right parent
and a right ci, for all c(x1, · · · ,xn) ∈ C and 1 ≤ i ≤ n, and by transforming every
command c(x1, · · · ,xn) ∈ C, such that after creating xi, for some 1 ≤ i ≤ n, we
enter ci in [xi,xi] and parent in [xpj ,xi] for all xpj parent arguments of c. In
the following, for the simplicity of the exposition, we will not formalize this.

Clearly, the relation above is an equivalence and to every equivalence class we
can uniquely associate a ground term from Tψ. Consequently, we will denote an
equivalence class by [t]Q, where t is the corresponding term from Tψ.

In the following, when we say equivalence relation we mean the relation ≡Q

and when we say equivalence class, we mean an equivalence class of ≡Q.

Definition 5.3. Let ψ = (R,C,Q0) be a protection system. We say that a term
from Tψ is accessible if there exists Q ∈ Cf(R) such that Q0 →∗

ψ Q and [t]Q = ∅.
By Acc(ψ) we will denote the set of accessible terms.

Definition 5.4. A monotonic protection system ψ = (R,C,Q0) is called
creation-independent if R can be partitioned into two disjunctive sets Rc and
Re such that:

– the “create” commands test for and enter only rights from Rc;
– the other commands (the commands that contain only “enter” operations)

enter only rights from Re.

We can easily see that MTAM systems are particular cases of creation-
independent protection systems in which Rc = T , Re = R and the tests for
the rights in Rc are as in command γ(c) from Fig. 1.

If ψ = (R,C,Q0) is a protection system, we will denote by Reachψ(Q,C′),
where Q ∈ Cf(R) and C′ ⊆ C, the set of reachable configurations from Q using
only commands from C′.

Now, we prove that for any creation-independent system ψ, any t ∈ Acc(ψ)
and any reachable configuration Q, we can apply in Q a sequence of “create”
commands to create an object from an equivalence class represented by t.

106 C. Enea

Lemma 5.1. Let ψ = (R,C,Q0) be a creation-independent protection system
and C′ ⊆ C the set of “create” commands. Then,

(∀t ∈ Acc(ψ))(∀Q ∈ Reachψ(Q0,C)(∃Q′ ∈ Reachψ(Q,C′))(|[t]Q′ | = |[t]Q|+ 1)

Proof. From Definition 5.4, we can see that the application of a “create” com-
mand is not influenced in any way by the application of a command from C−C′.

Because, ψ is also monotonic, we can easily obtain the result above. �
Theorem 5.1. Let ψ = (R,C,Q0) be a creation-independent protection sys-
tem. If Acc(ψ) is finite then, ψ belongs to Dec.

Proof. If ψ is a creation-independent protection system, then R can be parti-
tioned into Rc and Re as in Definition 5.4.

Let ψf = (R,Cf ,Q′
0 = (S′

0,O
′
0,P

′
0)) be a protection system, where Cf ⊆ C is

the set of commands that do not create objects and:

– O′
0 = {t|t ∈ Acc(ψ)}. Clearly, O0 ⊆ O′

0;
– S′

0 is the set of subjects from O′
0;

– P ′
0 is defined such as it’s restriction to objects from O0 is P0 and in the cells

of the other objects we have the rights from Rc entered by the corresponding
“create” commands.

In other words, Q′
0 is obtained from Q0 applying “create” commands such that

we obtain objects from equivalence classes represented by all terms in Acc(ψ).
We will prove that ψ is quasi-bisimilar to ψf w.r.t idO0 and idR.
In the following, for a configuration Q = (S,O,P), fQ : O → Acc(ψ) is a

function such that f(o) = t iff o ∈ [t]Q.
We consider the following relation B: given Q = (S,O,P) reachable in ψ and

Q′ = (S′,O′,P ′) configuration from Cf(R), we have B(Q,Q′) if:

– O0 ⊆ O and O′ = Acc(ψ);
– r ∈ P ′(t1, t2) iff there exists s ∈ [t1]Q and o ∈ [t2]Q such that r ∈ P (s, o).

To prove that B is a quasi-bisimulation, let Q and Q′ be two configurations like
above such that B(Q,Q′).

Clearly, Q "idO0 ,idR Q′.
Now, let Q1 be a configuration such that Q →ψ Q1. If we apply a “create”

command then, we can find Q′
1 = Q′, such that Q′ →∗

ψf
Q′

1 and B(Q1,Q
′
1). Oth-

erwise, suppose we apply a command c(x1, · · · ,xn) ∈ C′, with actual arguments
o1, · · · , on. Since B(Q,Q′), we can apply c(x1, · · · ,xn) with actual arguments
fQ(o1), · · · , fQ(on) in Q′ and obtain a configuration Q′

1 such that B(Q1,Q
′
1).

For the reverse, suppose we have Q′ →ψf
Q′

1, for some configuration Q′
1.

Clearly, in this step we apply a command c(x1, · · · ,xn) that contain only “enter”
primitive operations. Suppose it is applied using t1,· · ·,tn ∈ Acc(ψ) as actual
arguments.

Since ψ is monotonic and create-independent, we can reach in ψ from Q a
configuration Q such that B(Q,Q′) and the access matrix of Q includes that of
Q and has in plus one object oi for each ti above, such that oi ∈ [ti]Q and oi

Unifying Decidability Results on Protection Systems Using Simulations 107

has in his cells the same rights as ti in Q′ (the creation of objects is possible
by Lemma 5.1 and the rights can be entered in the cells of oi because, once we
have applied in ψ a command that contains only “enter” primitive operations,
we can apply it later eventually with equivalent actual arguments).

Now, in Q we can apply c with o1,· · ·,on as actual arguments and obtain a
configuration Q1 such that B(Q1,Q

′
1).

The fact that B(Q0,Q
′
0) ends our proof. �

Using Theorem 5.1, we will prove that MTAM systems with acyclic creation
graphs and mono-operational protection systems belong to Dec.

Corollary 5.1. MTAM systems with acyclic creation graphs belong to Dec.

Proof. As stated above we suppose that MTAM systems are in canonical form
and consequently, they are creation-independent.

Since the creation graph is acyclic, we have also that the set of accessible
terms is finite and we can apply Theorem 5.1, to obtain the statement of this
corollary. �

5.2 Mono-operational Protection Systems

Mono-operational protection systems ([2]) are protection systems with mono-
operational commands. We will show that they are included in Dec in two steps,
by proving first that the subclass of monotonic mono-operational protection
systems is included in Dec.

Theorem 5.2. Monotonic mono-operational protection systems belong to Dec.

Proof. In the following we will consider protection systems such that every
object is also a subject. This can be assumed without loss of generality by
introducing an otherwise empty row for each pure object.

Hence, let ψ = (R,C,Q0 = (O0,O0,P0) be a monotonic mono-operational
protection system, such that the commands in C do not contain “create object”
primitive operations.

We will prove that ψ is quasi-bisimilar to some monotonic mono-operational
system ψ′ that is creation-independent and has Acc(ψ′) finite. Consequently, by
Theorem 5.1, ψ′ ∈ Dec and from the definition of Dec, ψ ∈ Dec.

Let ψ′ = (R ∪ {alive},C′,Q′
0 = (O0,O0,P

′
0)), where P ′

0 is defined by:

P ′
0(s, o) =

{
P0(s, o) ∪ {alive}, if s = o;
P0(s, o), otherwise.

and C′ is obtained from C in the following way:

– modify each conditional part of an “enter” command (command that con-
tains an “enter” primitive operation) c(x1, · · · ,xn) ∈ C by adding tests of
the form: alive in [xi,xi], for all 1 ≤ i ≤ n;

– add a command cs(x) that has the conditional part empty and only a prim-
itive operation “create subject x”.

108 C. Enea

– remove each “create” command c(x1, · · · ,xn) that creates a subject xi, for
some 1 ≤ i ≤ n, and add an “enter” command with the conditional part
of c, modified as in the first case, and a primitive operation “enter alive in
[xi,xi]”.

Now, we prove that ψ "idO0 ,idR ψ′, using the following relation B: if Q =
(O,O,P) ∈ Cf(R) and Q′ = (O′,O′,P ′) ∈ Cf(R ∪ {alive}), we have B(Q,Q′)
if:

– O0 ⊆ O and O0 ⊆ O′;
– if O′

alive = {o|o ∈ O′ and alive ∈ P ′(o, o)} then, there exists a bijection
φ : O→ O′

alive, such that:
• φ(o) = o, for every o ∈ O ∩O0;
• r ∈ P (o1, o2) ⇔ r ∈ P ′(φ(o1),φ(o2)), for all o1, o2 ∈ S and r ∈ R.

We can easily prove that B is a quasi-bisimulation relation, if we take in consid-
eration the following:

– applying a “create” command in ψ is equivalent with applying in ψ′ the
“create” command cs and an “enter” command that gives to this new subject
the alive right to himself;

– in ψ′ we can create more subjects than in ψ, but if they do not have the
alive right to themselves, they are useless. In fact, only to commands that
enter the alive right in ψ′, we associate a “create” command in ψ.

Clearly, ψ′ is create-independent since the only “create” command does not test
or enter any right. Acc(ψ′) is finite, because all the created objects in ψ′ are
from an equivalence class represented by the same term cs(∅). �

Theorem 5.3. Mono-operational protection systems belong to Dec.

Proof. Let ψ = (R,C,Q0) be a mono-operational system.
From Example 3.2 we have that ψ ≺idO0 ,idR ψm, where ψm = (R,Cm,Q0) is

the monotonic restriction of ψ.
As Cm ⊆ C, from Example 3.1 we have also that ψm ≺idO0 ,idR ψ.
The fact that idO0 and idR are injective and ψm is a monotonic mono-

operational protection system, which by Theorem 5.2 belongs to Dec, concludes
our proof. �

5.3 Take-Grant Systems

Take-grant systems ([4]) are protection systems ψ = (R,C,Q0 = (O0,O0,P0)),
where R = {t, g, c} and C is the set of commands shown in Fig. 2, for all
α,β, γ ∈ R. It is clear that the system is monotonic and all objects are also
subjects.

In the original paper, take-grant systems were presented as graph transfor-
mation systems. A configuration Q = (O,O,P) is represented as a labeled di-
rected graph, using subjects as nodes and cells in the matrix as labeled arcs
(if P (o1, o2) = ∅, we have an arc from o1 to o2 labeled with P (o1, o2)). The

Unifying Decidability Results on Protection Systems Using Simulations 109

command takeα(x, y, z) command grantα(x, y, z) command create(x, y)
if t in [x, y]

α in [y, z]
then

enter α in [x, z]

if g in [x, y]
α in [x, z]

then
enter α in [y, z]

create subject y
enter t in [x, y]
enter g in [x, y]
enter c in [x, y]

command callα(x, y, z, u)

command callα,β(x, y, z, u)

command callα,β,γ(x, y, z, u)

if α in [x, y]
c in [x, z]

then

if α in [x, y]
β in [x, y]
c in [x, z]

then

if α in [x, y]
β in [x, y]
γ in [x, y]
c in [x, z]

then

create subject u
create subject u

create subject u

enter α in [u, y]
enter t in [u, z]

enter α in [u, y]
enter β in [u, y]
enter t in [u, z]

enter α in [u, y]
enter β in [u, y]
enter γ in [u, y]
enter t in [u, z]

Fig. 2. Take-grant commands

commands in Fig. 2 are represented as graph transformations that introduce
nodes and/or arcs.

We say that two nodes are connected if there exists a path between them,
independent of the directionality or labels of the arcs. The decidability of the
safety problem is obtained from the following theorem:

Theorem
Let ψ be a take-grant system. ψ is leaky for (o1, o2, r) iff in G0 (the graph that
represents Q0) o1 and o2 are connected and there exists an incoming arc in o2
labeled with t or c if r = t or with r if r ∈ {g, c}.

We will prove that take-grant protection systems are in Dec, by showing that
they are quasi-bisimilar to a finite protection system with the same initial
configuration.

Theorem 5.4. Take-grant systems belong to Dec.

Proof. If ψ = (R,C,Q0 = (O0,O0,P0)) is a take-grant protection system like
above, let ψf = (R,C′,Q0), where C′ contains all the commands of the following
form:

command ci,α(x, y, z,x1, · · · ,xi)
if connected(x, y,x1, · · · ,xi)

α in [z, y]
then

enter α in [x, y]

where 0 ≤ i ≤ |O0|−2 and α ∈ R. connected(x, y,x1, · · · ,xi) is a set of conditions
obtained from the conditions below, choosing one from each line:

110 C. Enea

β1 in [x,x1] or β1 in [x1,x]
β2 in [x1,x2] or β2 in [x2,x1]

· · ·
βi+1 in [xi, y] or βi+1 in [y,xi].

Above, βk, for 1 ≤ k ≤ i+ 1, can be any right from R.
Intuitively, connected(x, y,x1, · · · ,xi) checks if in the graph that represents

the configuration in which we apply ci,α, the nodes x and y are connected by a
path of length i+ 2 that passes through x1,· · ·,xi.

We will prove that ψ "idO0 ,idR ψf , considering the following relation B: given
Q1 = (S1,O1,P1) reachable from Q0 and Q2 = (S2,O2,P2) ∈ Cf(R), we have
B(Q1,Q2) if:

– O2 = O0;
– r ∈ P1(s, o)⇔ r ∈ P2(s, o), for any s ∈ S0, o ∈ O0 and r ∈ R.

Now, we will prove that B is a quasi-bisimulation relation between ψ and ψf

w.r.t. idO0 and idR.
Q1 "idO0 ,idR Q2 is straightforward from the definition of B.
Now suppose that Q1 →ψ Q′

1 by a command c.
If c is takeα, then suppose it is applied with some actual arguments s1, s2

and s3. If all these objects are initial then, because c is also present in C′, we
can apply it with the same actual arguments in Q2 and obtain a configuration
Q′

2 such that B(Q′
1,Q

′
2).

If not, we have two cases: whether or not s1 and s3 are both initial objects. If
they are not both initial objects then, we can find Q′

2 = Q2 such thatQ2 →∗
ψf

Q′
2

and B(Q′
1,Q

′
2).

If s1 and s3 are both from O0 then from the main result of [4] stated above,
we have that there exists some initial objects o1,· · ·,oi, for some i between 0
and |O0| − 2, such that connected(s1, s3, o1, · · · , oi) is true and also, there exists
some initial object o such that α ∈ P0(o, s3). Since ψ and ψf are monotonic,
these conditions are true also in Q2 and thus, we can apply a command from C′

to add α in [s1, s3]. Consequently, we can obtain a configuration Q′
2 such that

Q2 →∗
ψf
Q′

2 and B(Q′
1,Q

′
2).

The case when c is grantα is similar.
If c is a create or call command then, we can find Q′

2 = Q2 such that Q2 →∗
ψf

Q′
2 and B(Q′

1,Q
′
2).

For the reverse, suppose that Q2 →ψf
Q′

2. Also, from the main result of [4],
we can find a configuration Q′

1 such that Q1 →∗
ψ Q′

1 and B(Q′
1,Q

′
2).

The fact that B(Q0,Q0) concludes our proof. �

6 Conclusions

In this paper we have introduced two notions of simulation between protection
systems. As a model for protection systems we have used the well-known access
matrix model of Harrison, Ruzzo and Ullman ([2]). We have shown how we can

Unifying Decidability Results on Protection Systems Using Simulations 111

use the resulting simulation relations to solve the safety problem for protection
systems.

Then, we have used these relations to unify the proofs of decidability of the
safety problem for several classes of protection systems from the literature:
the mono-operational protection systems ([2]), the take-grant protection sys-
tems ([4]), and the monotonic typed access matrix systems with acyclic creation
graphs ([9]). All these protection systems are infinite-state systems, but we have
shown that they are simulated by some protection systems that do not create
objects and consequently, are finite-state systems.

In future work, we will try to extend the results presented here and obtain
new decidability results of the safety problem for protection systems. We will
also try to consider other models for protection systems than the access matrix
model used in this paper.

References

1. Ammann, P.E., Sandhu, R.: Extending the creation operation in the schematic pro-
tection model. In Proc. of the 6th Annual Computer Security Applications Confer-
ence (1990) 304-348

2. Harrison, M.A., Ruzzo, W.L., Ullman, J.D: Protection in operating systems. Com-
munications of ACM 19(8) (1976) 461-471

3. Harrison, M.A., Ruzzo, W.L.: Monotonic protection systems. In DeMillo et al. (ed-
itors) “Foundations of Secure Computation”, Academic Press 1978

4. Lipton, R.J., Snyder, L.: A linear time algorithm for deciding subject security. Jour-
nal of ACM 24(3) (1977) 455-464

5. Lipton, R.J., Snyder, L.: On synchronization and security. In Demillo et al. (editors)
“Foundations of Secure Computation” Academic Press 1978

6. Milner, R.: An algebraic definition of simulation between programs. In Proc. of the
2nd International Joint Conference on Artificial Intelligence (1971) 481-489

7. Park, D.: Concurrency and automata on infinite sequences. In Proc. of the 5th
GI-Conference on Theoretical Computer Science (1981) 167-183

8. Sandhu, R.: The schematic protection model: its definition and analysis for acyclic
attenuating schemes. Journal of ACM 35(2) (1988) 404-432

9. Sandhu, R.: The typed access matrix model. In Proc. of the IEEE Symposium on
Research in Security and Privacy (1992) 122-136

Proof Obligations Preserving Compilation
(Extended Abstract)

Gilles Barthe1, Tamara Rezk1, and Ando Saabas2

1 INRIA Sophia Antipolis, France
{Gilles.Barthe, Tamara.Rezk}@sophia.inria.fr

2 Institute of Cybernetics, Tallinn University of Technology, Estonia
ando@cs.ioc.ee

Abstract. The objective of this work is to study the interaction be-
tween program verification and program compilation, and to show that
the proof that a source program meets its specification can be reused to
show that the corresponding compiled program meets the same specifi-
cation. More concretely, we introduce a core imperative language, and
a bytecode language for a stack-based abstract machine, and a non-
optimizing compiler. Then we consider for both languages verification
condition generators that operate on programs annotated with loop in-
variants and procedure specifications. In such a setting, we show that
compilation preserves proof obligations, in the sense that the proof obli-
gations generated for the source annotated program are the same that
those generated for the compiled annotated program (using the same
loop invariants and procedure specifications). Furthermore, we discuss
the relevance of our results to Proof Carrying Code.

1 Introduction

1.1 Background and Contribution

Interactive verification techniques provide a means to guarantee that programs
are correct with respect to a formal specification, and are increasingly being
supported by interactive verification environments that can be used to prove
the correctness of safety critical or security sensitive software. For example, in-
teractive verification environments are being used to certify the correctness of
smartcard software, both for platforms and applications.

However interactive verification environments typically operate on source code
programs whereas it is clearly desirable to obtain correctness guarantees for com-
piled programs, especially in the context of mobile code where code consumers
may not have access to the source program. Therefore it seems natural to study
the relation between interactive program verification and compilation.

In this paper, we focus on the interaction between compilation and verifica-
tion condition generators (VC generators), which are used in many interactive
verification environments to guarantee the correctness of source programs, and
by several proof carrying code (PCC) architectures to check the correctness of
compiled programs. Such VC generators operate on annotated programs that

T. Dimitrakos et al. (Eds.): FAST 2005, LNCS 3866, pp. 112–126, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Proof Obligations Preserving Compilation 113

carry loop invariants and procedure specifications expressed as preconditions
and postconditions, and yield a set of proof obligations that must be discharged
in order to establish the correctness of the program.

The main technical contribution of the paper is to show in a particular set-
ting that compilation preserves proof obligations, in the sense that the set of
proof obligations generated for an annotated source code program P is equal to
the set of proof obligations generated for the corresponding annotated compiled
program C(P) (we let C(.) be some compilation function), where annotations
for C(P) are directly inherited from annotations in P . The immediate practical
consequence of the equivalence is that the results of interactive source program
verification (i.e. the proofs that are built interactively) can be reused for check-
ing compiled programs, and hence that it is possible to bring the benefits of
interactive program verification (at source code level) to the code consumer.

One important question is whether preservation of proof obligations can be
derived from the semantical correctness of the compiler (in the sense that com-
piled programs have the same semantics as their source counterpart), and thus
can be established independently of the exact definition of the compiler. The
answer is negative: our results hold for a specific compiler that does not perform
any optimization, and simple program optimizations invalidate preservation of
proof obligations. We return to this point in Section 5.

Another question is the choice of the source and target languages: our source and
target languages are loosely inspired from Java (e.g. we handle procedure calls dif-
ferently), as our main application scenario deals with Java-enabled mobile phones.

1.2 Application Scenarios

In this paragraph, we propose a scenario that exploits preservation of proof
obligations to bring the benefits of interactive source program verification to the
code consumer. The scenario may be viewed as an instance of Proof Carrying
Code (PCC) [9], from which it inherits benefits including its robustness under the
code/specification being modified while transiting from producer to consumer
and/or under the assumption of a malicious producer, and issues including the
difficulty of expressing security policies for applications, etc.

Scenario. Consider a mobile phone operator that is keen of offering its cus-
tomers a new service and has the possibility to do so by deploying a program
C(P) originating from an untrusted software company. The operator is worried
about the negative impact on its business if the code is malicious or simply er-
roneous, and wants to be given guarantees for C(P). For liability reasons, the
operator does not want to see the source code, and for intellectual property rea-
sons, the software company does not want to disclose its source code nor does it
authorize the operator to modify the compiled code to insert additional checks.

The equivalence of proof obligations can be used to justify the following sce-
nario: the operator provides a partial specification of the program, e.g. a precon-
dition φ and a postcondition ψ for the program main procedure, and requires
the company to show that the program meets this partial specification. There

114 G. Barthe, T. Rezk, and A. Saabas

are two possibilities: either the software company verifies directly C(P), which
is definitely a possibility but not the most comfortable one, or thanks to preser-
vation of proof obligations, it can also set to verify P , and benefits from the
structured nature of modern programming languages in which we assume that
P has been written. To verify P , the software company suitably annotates the
program, leading to an annotated program P ′. Then it generates the set of proof
obligations for P ′ and discharges each proof obligation using some verification
tool that produces proofs. The compiled annotated program is sent to the oper-
ator, together with the set of proof obligations and their proofs. Upon reception,
the operator checks that the compiled annotated program provided by the soft-
ware company matches the partial specification it formulated in the first place
(here it has to check that the precondition and postcondition are unchanged),
and then run its own verification condition generator, and checks with the help
of the proofs provided by the software company that these proof obligations can
be discharged.

Our application scenario is being considered for specific application domains,
such as midlets, where operators currently dispose of a large number of GSM
applications that they do not want to distribute to their customers due to a lack
of confidence in the code. Of course, we do not underestimate that our approach
is costly, both by the infrastructure it requires, and by the effort involved in using
it (notably by involving program verification). However, the pay-off is that our
approach enables to prove precisely properties of programs, i.e. in particular
correct programs will not be rejected because of some automatic method which
is overly conservative (i.e. rejects correct programs).

Our approach can also be used in other mobile code scenarios. Consider for
example a repository of certified algorithms; the algorithms have been written
in different programming languages, but they are stored in the directory as
compiled programs, e.g. as CLR programs. Prior to adding a new algorithm,
say an efficient algorithm to verify square root, the maintainer of the repository
asks for a certificate that the algorithm indeed computes the square root. The
correctness of the algorithm must be established through interactive verification,
say by the implementer of the algorithm. The implementer has the choice to
write a proof using a program logic for the language in which the algorithm was
developed, or using an appropriate bytecode logic. Once again, it seems likely
that the first approach would be favored, and therefore that proof obligation
preserving compilation would be useful.

1.3 Related Work

There are several lines of work concerned with establishing a relation between
source programs and compiled programs. The most established line of work is
undoubtedly compiler verification [7], which aims at showing that a compiler
preserves the semantics of programs.

A more recent line of work is translation validation, proposed by A. Pnueli,
M. Siegel and E. Singerman [11], and credible compilation, proposed by
M. Rinard [13], aim at showing for each individual run of the compiler that the

Proof Obligations Preserving Compilation 115

resulting target program implements correctly the source program, i.e. has the
same semantics. This is achieved by the automatic generation of invariants for
each program point in the source code that must be satisfied at the correspond-
ing program points in the source code. This technique does not allow to verify
that a given specification is satisfied. Related work has also been done by X. Ri-
val [14, 15], who uses abstract interpretation techniques to infer invariants at the
source level and compile these invariants for the target level.

Our work is complementary to approaches to Proof-Carrying Code based
on certifying compilation. In [10], Necula and Lee propose to focus on safety
properties which can be proved automatically through an extended compiler
that synthesizes annotations from the information it gathers about a program,
and a checker that discharges proof obligations generated by the verification
condition generator. Certifying compilers are very important for the scalability
of PCC, but of course the requirement of producing certificates automatically
reduces the scope of properties it can handle.

There are also some recent works on program specification and verification
that involve at source level and target levels: the Spec# project [3] has defined
an extension of C# with annotations and type support for nullity discrimina-
tion. Such annotated programs are then compiled (with their specifications) to
extended .NET files, which can be run using the .NET platform. Specifications
are checked at run-time or verified using a static checker (called Boogie). This
work does not consider explicitly the relationship between source and compiled
program verification (but the Spec# methodology implicitly assumes some re-
lation between the two, otherwise letting users to specify source code and have
Boogie verifying the corresponding compiled program would be meaningless).
In a similar line of work, L. Burdy and M. Pavlova [5] have extended the proof
environment Jack, which provides a verification condition generator for JML-
annotated sequential Java programs, with a verification condition generator for
extended Java class files that accommodate compiled JML annotations. How-
ever, they do not establish any formal relation between the two VC generators.
Independently of this work, F. Bannwart and P. Müller [2] have considered proof
compilation for a substantial fragment of sequential Java, and have discuss the
translation of proofs from source code to bytecode. However, their work does not
discuss automatic proof verification, neither establishes the correctness of proof
compilation in their setting. None of these works discusses optimizations.

For completeness, we also mention the existence of many Hoare-like logics and
weakest precondition calculi for low-level languages such as the JVM or .NET
or assembly languages, see e.g. [1, 4, 8, 12, 16]; many of these works have been
proposed in the context of PCC.

Contents. The remaining of the paper is organized as follows. Section 2 intro-
duces syntax and annotation language, and VC generators for the assembly and
source languages. Preservation of proof obligations is addressed in Section 3.
Section 4 illustrates how our approach can be applied to guarantee program cor-
rectness. Finally, we conclude in Section 5 with related work and directions for
future research.

116 G. Barthe, T. Rezk, and A. Saabas

2 Language and Proof Systems Definitions

In the sequel, we let V be the set of values that are manipulated by programs
(here V = Z), and assume given a set A ⊆ V × V → V of arithmetic operations
and a set C ⊆ V ×V → {0, 1} of comparison operators. Furthermore, we assume
given a set M of procedure names and a set X of program variables.

2.1 The Assembly Language

The assembly language SAL is a stack-based language with conditional and
unconditional jumps, procedure calls and exceptions. It is powerful enough to
compile the core imperative language described in Section 2.2.

SAL programs are sets of procedures with a distinguished procedure main.
Each procedure m consists of a function from its set Pm of program points
to instructions where the set of instructions is defined in Figure 1, and of a
partial function Handlerm : Pm ⇀ Pm which specifies for each program point
its handler, if any. We write Handlerm(l) ↑ if Handlerm(l) is undefined, and
Handlerm(l) ↓ otherwise. Program states are pairs consisting of a global reg-
ister map, and a stack of frames, which correspond to the execution context
of a procedure, and which consist of an operand stack, a program counter and
the name of the procedure being executed. The operational semantics is stan-
dard (except for assert that does not change the state, i.e. it is like a no op-
eration instruction). Note that upon a procedure invocation, a new frame is
created with an empty operand stack and with the program pointer set to
1 (the initial instruction of a procedure). As to exception handling, the in-
tuitive meaning is that if the execution at program point l in procedure m
raises an exception and Handlerm(l) = t, then control is transfered to t with an
empty operand stack. If on the contrary Handlerm(l) is not defined, then the
top frame is popped from the stack and the exception is transfered to the next
frame.

instr ::= prim op primitive arithmetic operation
| push n push n on stack
| load x load value of x on stack
| store x store top of stack in x
| if cmp j conditional jump
| goto j unconditional jump
| assert Φ assertion Φ
| nop no operation
| invoke m procedure invocation
| throw throw an exception
| return end of program

where op : A, and cmp : C, and x : X , and n : V, j : N, m : M and Φ is an assertion.

Fig. 1. Instruction set

Proof Obligations Preserving Compilation 117

In the sequel, we use the successor relation �→⊆ Pm×Pm which relates instruc-
tion to their successors. We assume that the successor of an assert instruction
always belongs to the instructions of the procedure (we need this assumption for
the sake of simplicity of definition of proof obligations further on).

Assertion language. The assertion language is a standard-first order language
that contains comparison between arithmetic expressions as base assertions, and
is closed under conjunction and implication. One unusual feature of arithmetic
expressions is that there are two special constants st and top for reasoning about
the stack. The constant top represents the size of the stack in the current state,
while the constant st can be thought of as an array used for an abstract repre-
sentation of the operand stack. Thus we can refer to the elements of an array via
expressions of the form st(top − i). The set of arithmetic expressions is defined
inductively as follows:

se ::= top | se− 1
aexpr ::= n | x | aexpr op aexpr | st(se)

where op : A.
The semantics of assertions is standard, except that assertions that refer to

an undefined arithmetic expression, i.e. that contain a reference to an element
outside the stack bounds, are considered to be false.

The definition of the VC generator relies extensively on substitution operators.
Besides the rules for substituting variables, which are standard, we also have
substitution rules for top and for the non-atomic expressions, namely st(top)
and top− 1.

Well-annotated programs. Verification condition generators compute from
partially annotated programs a fully annotated program, in which all program
points of each procedure of the program have an explicit precondition attached
to them. VCGens are partial functions that require programs to be sufficiently
annotated in the first place. We call such programs well-annotated.

The property of being well-annotated can be formalized through an induction
principle that is reminiscent of the accessible fragment of a binary relation: that
is, given a procedure Pm, a predicate R on Pm, we define ext R inductively by
the clauses: i) if i ∈ R then i ∈ ext R; ii) if for all j ∈ Pm such that i �→ j,
we have j ∈ ext R, then i ∈ ext R. Informally, ext R is the set of points from
which all paths eventually arrive at R.

Definition 1 (Well-annotated program).

1. Let Passert
m and P return

m be the set of program points i such that Pm[i] is an
assert instruction and return instruction respectively. Then Pm is a well-
annotated procedure code iff ext (Passert

m ∪ P return
m) = Pm.

2. A program is well-annotated if it comes equipped with functions EPost :
M → Assn and NPost : M → Assn that give the exceptional and normal
postcondition of each procedure, and a function Pre :M→ Assn which gives

118 G. Barthe, T. Rezk, and A. Saabas

the precondition of a procedure, preconditions and postconditions assertions
do not contain st or top, and each procedure is well-annotated.

Given a well-annotatedprogram, one can generate a precondition for eachprogram
point. Indeed, the assertion at any given program point can be computed from the
assertions for all its successors; the latter may either be given initially (as part of
the partially annotated program), or have been computed previously. Note that
the definition of well-annotated program does not require programs to have any
particular structure, e.g. unlike [12], they do not rule out overlapping loops.

Verification condition generator. The verification condition generator for
assembly programs, vcga, is defined as a function that takes as input a well-
annotated program P and returns an assertion for each program point in P .
This assertion represents the weakest liberal precondition that an initial state
before the execution of the corresponding program point should satisfy for the
method to terminate in a state satisfying its postcondition, that is NPost(m)
in case of normal termination or EPost(m) in case the method terminates with
an unhandled exception.

The computation of vcga proceeds in a modular way, i.e. procedure by pro-
cedure, and uses annotations from the procedure under consideration, as well as
the preconditions and post-conditions of procedures called by m. Concretely for
each program point, vcga is defined by a case analysis on the instruction Pm[i].

Its definition is given in Figure 2. Notice that we use −2, that does not belong
to the assertion language, instead of −1− 1 as syntactic sugar in the definition.
After calculating vcga of the procedure Pm (w.r.t. the annotations of Pm), we
define the set of proof obligations POm as

POm(Pm,NPost(m),EPost(m))
= {Φi ⇒ vcga(i+ 1) | i ∈ Passert

m }
∪ {NPost(m′)⇒ vcga(i+ 1) | Pm[i] = invoke m′}
∪ {Pre(m)⇒ vcga(1)} ∪Mh(m) ∪Mh(m)

where

Mh(m) = {EPost(m′) ⇒ vcga(t) | Pm[i] = invoke m′ ∧ Handlerm(i) = t}
Mh(m) = {EPost(m′) ⇒ EPost(m) | Pm[i] = invoke m′ ∧Handlerm(i) ↑}

Proof obligations fall in one of the following categories:

– proof obligations that correspond to assertions in code;
– proof obligations triggered by procedure calls, where one has to verify that

the postcondition of the invoked procedure implies the normal precondition
computed for the program point that corresponds to the program point of
the procedure invocation;

– the proof obligation that establishes that the normal precondition computed
for the first program point follows from the procedure precondition;

Proof Obligations Preserving Compilation 119

push n : vcga(i) = vcga(i + 1)[n/st(top), top/top− 1]
prim op : vcga(i) = vcga(i + 1)[st(top− 1) op st(top)/st(top), top− 1/top]
load x : vcga(i) = vcga(i + 1)[x/st(top), top/top− 1]
store x : vcga(i) = vcga(i + 1)[top− 1/top, st(top)/x]
if cmp j : vcga(i) = st(top− 1) cmp st(top) ⇒ vcga(i + j)[top− 2/top]

∧¬(st(top− 1) cmp st(top)) ⇒ vcga(i + 1)[top− 2/top]
goto j : vcga(i) = vcga(i + j)
assert Φ : vcga(i) = Φ,
nop : vcga(i) = vcga(i + 1)
throw : vcga(i) = EPost(m) if Handlerm(i) ↑
throw : vcga(i) = vcga(t) if Handlerm(i) = t
invoke m′ : vcga(i) = P re(m′)
return : vcga(i) = NPost(m)

Fig. 2. Verification condition generator for SAL procedures

– proof obligations triggered by procedure calls for the case that such calls raise
an exception that is handled by the procedure m. Here one has to verify
that the exceptional postcondition of m implies the normal precondition
computed for the handler of the program point where procedure invocation
occurs;

– proof obligations triggered by procedure calls for the case that such calls
raise an exception that is not handled by the procedure m. Here one has to
verify that the exceptional postcondition of the procedure called implies the
exceptional postcondition of m.

We define the set of proof obligation of a program as the union of the proof
obligations of all its methods:

PO(P) =
⋃

m∈M
POm(Pm,NPost(m),EPost(m))

One can prove that the verification condition generator is sound, in the sense
that if the program P is called with registers set to values that verify the precon-
dition of the procedure main, and P terminates normally, then the final state will
verify the normal postcondition of main. Likewise, if P terminates abnormally,
that is if an exception is thrown and there is no handler, then the final state
will verify the exceptional postcondition of main. Soundness is proved first for
one step of execution, and then extended to execution traces by induction on
the length of the execution.

2.2 Source Language

The source language IMP is an imperative language with loops and conditionals,
procedures and exceptions.

120 G. Barthe, T. Rezk, and A. Saabas

Definition 2. 1. The set AExpr of arithmetic expressions, and AProgIMP of
commands are given by the following syntaxes:
expr ::= x | n | expr op expr
cmpexpr ::= expr cmp expr
comm ::= skip | x := expr | comm; comm | while {I} cmpexpr do comm |

if cmpexpr then comm else comm|try comm catch comm |
throw | call m

where op and cmp are as in Section 2.1 and I is an assertion as defined in
Section 2.1, but without the constants top and st.

2. We define a program P in IMP as a set of procedures (we use m to name
a procedure), and their corresponding bodies, which are a command from
AProgIMP (we use Pm to name a procedure code).

We define a standard verification condition generator vcg, which takes as input
a command and an assertion, and returns an assertion. The function is im-
plicitly parameterized by assertions; concretely, we assume that all procedures
are annotated with a precondition, a normal postcondition, and an exceptional
postcondition.

vcg(skip, Q,R) = Q
vcg(x := e, Q,R) = Q[e/x]
vcg(c1; c2, Q, R) = vcg(c1, vcg(c2, Q,R), R)
vcg(while {I} e do c1, Q,R) = I
vcg(if e1 cmp e2 then c1 else c2, Q, R) =

(e1 cmp e2) ⇒ vcg(c1, Q, R)∧
¬(e1 cmp e2) ⇒ vcg(c2, Q, R)

vcg(try c catch c′, Q, R) = vcg(c, Q, vcg(c′, Q, R))
vcg(throw, Q, R) = R
vcg(call m′), Q, R) = P re(m′)

Fig. 3. Verification condition generator for IMP procedures

We also define inductively the set POc of proof obligations for a command as
follows:

POc(skip,Q,R) = ∅
POc(x := e,Q,R) = ∅
POc(c1; c2,Q,R) = POc(c1, vcg(c2,Q,R),R) ∪ POc(c2,Q,R)
POc(while {I} e do c1,Q,R) =

POc(c1,Q,R) ∪ {I ⇒ (e ⇒ vcg(c1, I,R) ∧ ¬e ⇒ Q)}
POc(if e1 cmp e2 then c1 else c2,Q,R) =

POc(c1,Q,R) ∪ POc(c2,Q,R)
POc(throw,Q,R) = ∅
POc(call m′,Q,R) = {EPost(m′) ⇒ R} ∪ {NPost(m′)⇒ Q}
POc(try c catch c′,Q,R) = POc(c,Q, vcg(c′,Q,R)) ∪ POc(c′,Q,R)

Proof Obligations Preserving Compilation 121

As in SAL, proof obligations fall in one of the following categories:

– proof obligations that correspond to annotations in while loops;
– proof obligations triggered by procedure calls,
– proof obligations triggered by procedure calls for the case that such calls

raise an exception that is handled by the procedure m.

We define for every procedure m with body c, the set of proof obligations
POm(c,NPost(m),EPost(m)) as:

POc(c,NPost(m),EPost(m))∪
{Pre(m)⇒ vcg(c,NPost(m),EPost(m))}

That is, the proof obligations of a method are those generated by the body
of the methods plus the proof obligation that establishes that the precondition
computed for the body of the methods follows from the procedure precondition.

Finally, the set of proof obligation for a program P is defined as the union of
proof obligations for each method in P :

PO(P) =
⋃

m∈M
POm(Pm,NPost(m),EPost(m))

3 Proof Obligations Preserving Compilation

This section shows that the sets of proof obligations are preserved by a standard
non-optimizing compiler. The consequence of this result is that having annota-
tions and proofs of proof obligations for the source code, the same evidence can
be used to prove automatically the correctness of its corresponding compiled
program.

Definition 3. The compilation function Cp : AProgIMP → AProgSAL is defined
in Figure 4, using an auxiliary function Ce : AExpr → AProgSAL (also defined in
Figure 4), and another auxiliary function to define exception tables (defined
in Figure 5).

The compilation of exception tables defines handlers for program points of in-
structions enclose in the ”try” part of try-catch commands as the first program
point of the code enclose in their ”catch” part.

Throughout this section, we use vcg(p,Q,R) to denote both verification con-
dition generator at source code and bytecode. For the bytecode, vcg(p,Q,R) is
vcga(i) where the normal and exceptional postconditions are Q and R resp. and
where i is the first program point in p.

We begin with an auxiliary lemma about expressions. Given a list P of in-
structions, we use the notation P [i...j] to denote the list of instructions from
instruction at i up to j.

Lemma 1. Let e be an arithmetic expression in AExpr which appears in program
P , and suppose that we have that Ce(e) = Cc(P)[i...j]. Let Q be an assertion in
Assn that includes an arithmetic expression st(top). Assume vcga(j + 1) = Q.
Then vcg(i) = Q[e/st(top), top/top− 1].

122 G. Barthe, T. Rezk, and A. Saabas

Ce(x) = load x
Ce(n) = push n

Ce(e op e′) = Ce(e) :: Ce(e′) :: prim op
Cc(skip) = nop

Cc(x := e) = Ce(e) :: store x
Cc(c1; c2) = Cc(c1) :: Cc(c2)

Cc(while {I} e1 cmp e2 do c) = let l1 = Ce(e1); l2 = Ce(e2); l3 = Cc(c); x = #l3;
y = #l1 + #l2 in goto (#l3 + 1) :: l3 ::

assert I :: l2 :: l1 :: if cmp (pc− x− y)
Cc(if e1 cmp e2 then c1 else c2) = let le = Ce(e1) :: Ce(e2); lc1 = Cc(c1); lc2 = Cc(c2);

x = #lc2; y = #lc1 in le :: if cmp (pc + x + 2) :: lc2

:: goto (y + 1) :: lc1

Cc(call m′((e))) = Ce((e)) :: invoke m′

Cc(throw) = throw

Cc(try c1 catch c2) = let lc1 = Cc(c1); lc2 = Cc(c2);
x = #lc2; in
lc1 :: goto (x + 1) :: lc2

Fig. 4. Compiling IMP to SAL

X (c1; c2) = X (c1) :: X (c2)

X (while e do c) = X (c)

X (if e then c1 else c2) = X (c1) :: X (c2);

X (try c1 catch c2) = let lc1 = Cc(c1); lc2 = Cc(c2);
x = #lc1; in
X (c1) :: X (c2) :: 〈1, x + 1, x + 2〉

X () = ε

Fig. 5. Definition of exception tables

The following lemma states that if there exists a handler c′ at source level for
a command c, then any exception thrown in the compilation of c will have a
handler that corresponds to the compilation of c′.

Lemma 2 (Handler Preserving Compiler). Let command try c catch c′ s.t.
it is the inner-most try-catch command enclosing c and let Pm[i . . . j] = Cc(c)
and Pm[i′ . . . j′] = Cc(c′) be compilations of c and c′. Then for any h ∈ {i . . . j}
that can throw an exception in Pm, Handlerm(h) = i′ and if c is not enclosed in
a try-catch command Handlerm(h) ↑.

The following proposition establishes that compilation “commutes” with verifi-
cation condition generation.

Proof Obligations Preserving Compilation 123

Proposition 1. vcg(Cc(c),Q,R) = vcg(c,Q,R)

The following theorem claims that the set of proof obligations of the original
program are the same of the proof obligations generated after compilation.

Theorem 1 (Proof Obligation Preserving Compilation).

POm(Cc(c),Q,R) = POm(c,Q,R)

4 Example

The purpose of this section is to illustrate how the application scenario from
the introduction can be applied to guarantee that compiled applications meet
high-level security properties, such as the absence of uncaught exceptions, as well
as specific security properties, such as non-interference; the latter is encoded in
our language using self-composition as described in [6]. Here the operator will
determine which program variables (in a more realistic language one would focus
on method parameters) of the program P to be certified are to be considered
confidential. In turn, this choice sets the precondition and the postcondition,
namely x = x′, where x are the low variables of P , and x′ is a renaming of
the low variables of P . Suppose in addition that the operator does not want the
program to raise uncaught exceptions. Then the code producer must establish

{x = x′}P ;P ′{x = x′, false}

where P ′ is a renaming of P with fresh variables x′ for low variables, and y′ for
high-variables. False as the exceptional postcondition denotes that an exception
should not be thrown. To make matter precise, consider that P is the program
constituted of two procedures main and aux that take one public parameter x
and one private parameter y, with main and aux defined as

main == x := y; call aux
aux == x := 3; while x ≥ 1 do y := y ∗ x;x := x− 1

(Note that the program is non-interfering, since it always return with x = 0.
However, the program is typically rejected by a type system.)

In order to prove the required properties, the software company must provide
appropriate precondition and postcondition for the method aux, as well as ap-
propriate loop invariants, and discharge the resulting proof obligations for the
program verif defined as

verif == x := y; call aux; x′ := y′; call aux′

The annotated program is given in Figure 6, where we use red to denote the
specification provided by the operator, and green to denote the specification pro-
vided by the software company. We denote with blue the set of proof obligations.
In Figure 7, we show the annotated compiled program.

124 G. Barthe, T. Rezk, and A. Saabas

{x = x′}verif == x := y; call aux; x′ := y′; call aux′

{x = x′, false}

{true}
aux == x := 3; while {0 ≤ x} x ≥ 1 do y := y ∗ x;x := x− 1
{x = 0, false}

{x = 0}
aux′ == x′ := 3; while {0 ≤ x′ ∧ x = 0}x′ ≥ 1 do y′ := y′ ∗ x′; x′ := x′ − 1
{x = 0 ∧ x′ = 0, false}

Proof Obligations for main:
x = x′ ⇒ true
false ⇒ false, x = 0 ⇒ x = 0
false ⇒ false x = 0 ∧ x′ = 0 ⇒ x = x′

Proof Obligations for aux:
true ⇒ 0 ≤ 3
0 ≤ x ⇒ (x ≥ 1 ⇒ 0 ≤ x− 1 ∧ x < 1 ⇒ x = 0)

Proof Obligations for aux’:
x = 0 ⇒ 0 ≤ 3 ∧ x = 0
0 ≤ x′ ∧ x = 0 ⇒ (x′ ≥ 1 ⇒ 0 ≤ x′ − 1∧ x = 0 ∧ x < 1 ⇒ x = 0 ∧ x′ = 0)

Fig. 6. Example: Program with specification of Non-Interference

Precondition x = x′

i P [i] vcga(i)

1 load y true
2 store x true
3 invoke aux true
4 load y’ x =0
5 store x’ x = 0
6 invoke aux’ x =0
7 return x =x’

Posts x = x′, false

POmain :
x = x′ ⇒ true
false ⇒ false, x = 0 ⇒ x = 0
false ⇒ false x = 0 ∧ x′ = 0 ⇒ x = x′

Fig. 7. Compilation of the Example (main procedure)

Proof Obligations Preserving Compilation 125

5 Concluding Remarks

This paper shows, in a simple context, that it is possible to transfer evidence
of program correctness from a source program to its compiled counterpart. Fur-
thermore, we have shown on simple examples the possible uses of our results,
and discussed some possible application domains. Although not reported here,
we have also implemented a small prototype compiler and proof obligation gen-
erators to experiment our approach small examples.

We now intend to extend our results to (non-optimizing compilers for) pro-
gramming languages such as Java and C#. Furthermore, we intend to extend
our results to optimizing compilers. However, preservation of proof obligations
may be destroyed by simple program optimizations. If we allow optimizations,
it is necessary to focus on a more general property that involves an explicit
representation of proofs.

Property of Proof Compilation. For every annotated program P , a proof compiler
is given by:

– a function f that gives for every proof obligation at the assembly level a
corresponding proof obligation at the source level;

– a function that transforms, for every proof obligation ξ at the assembly level,
proofs of f(ξ) into proofs of ξ.

Proof compilation is a generalization of preservation of proof obligations and
allows to bring the benefits of source code verification to code consumers. Like
preservation of proof obligations, it is tied to a specific compiler; additionally,
it is tied to a representation of proofs (although some degree of generality is
possible here).

Preliminary investigations indicate that proof compilation is feasible for most
common program optimizations. These results will be reported elsewhere.

Furthermore, we would like to explore further scenarios in which proof com-
pilation could be used advantageously. We only mention two particularly in-
teresting scenarios: the compilation of aspect-oriented programming, and the
compilation of domain-specific languages DSLs into general purpose programs.
The latter application domain seems particularly relevant since one could hope
to exploit the features of DSLs to achieve easy proofs at the source code level.

Another item for future work is an evaluation of the usefulness of preservation
of proof obligations and proof compilation on larger case studies. In the short
term, the most promising application of our technique concerns high-level secu-
rity properties that are often found in security policies for mobile applications;
many of such properties are either recommended internally by the security ex-
perts to developers, or by external companies with strong security expertise (e.g.
some certification authority) to solution providers (e.g. our telecom operator in
the scenario of Subsection 1.2). In the longer term, it would be interesting to in-
vestigate the applicability of our method to the problem of performing dynamic
updates of mobile devices infrastructures; indeed, such a scenario will probably
require to establish that components behave according to their specification.

126 G. Barthe, T. Rezk, and A. Saabas

Acknowledgments. We thank Benjamin Grégoire, César Kunz, Dante Zanarini
and the anonymous referees for valuable comments on a preliminary version of
this paper. This work was partially supported by the Estonian-French coopera-
tion program Parrot, the EU projects APPSEM II, eVikings II, and INSPIRED,
the Estonian Science Foundation grant no 5567, and the French ACI Sécurité
SPOPS.

References

1. D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile Resource
Guarantees for Smart Devices. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet,
and T. Muntean, editors, Proceedings of CASSIS’04, volume 3362 of Lecture Notes
in Computer Science, pages 1–27, 2005.

2. F. Bannwart and P. Müller. A program logic for bytecode. In F. Spoto, editor,
Proceedings of Bytecode’05, Electronic Notes in Theoretical Computer Science. El-
sevier Publishing, 2005.

3. M. Barnett, K.R.M. Leino, and W. Schulte. The spec# programming system: An
overview. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, edi-
tors, Proceeings of CASSIS’04, volume 3362 of Lecture Notes in Computer Science,
pages 50–71. Springer-Verlag, 2005.

4. N. Benton. A typed logic for stacks and jumps. Manuscript, 2004.
5. L. Burdy and M. Pavlova. Java bytecode specification and verification. In Pro-

ceedings of SAC’06, 2006. To appear.
6. P. D’Argenio G. Barthe and T. Rezk. Secure information flow by self-composition.

In R. Foccardi, editor, Proceedings of CSFW’04, pages 100–114. IEEE Press, 2004.
7. Joshua D. Guttman and Mitchell Wand. Special issue on VLISP. Lisp and Symbolic

Computation, 8(1/2), March 1995.
8. N.A. Hamid and Z. Shao. Interfacing hoare logic and type systems for foundational

proof-carrying code. In K. Slind, A. Bunker, and G. Gopalakrishnan, editors,
Proceedings of TPHOLs’04, volume 3223 of Lecture Notes in Computer Science,
pages 118–135. Springer-Verlag, 2004.

9. G.C. Necula. Proof-Carrying Code. In Proceedings of POPL’97, pages 106–119.
ACM Press, 1997.

10. G.C. Necula and P. Lee. The Design and Implementation of a Certifying Compiler.
In Proceedings of PLDI’98, pages 333–344, 1998.

11. A. Pnueli, E. Singerman, and M. Siegel. Translation validation. In B. Steffen, edi-
tor, Proceedings of TACAS’98, volume 1384 of Lecture Notes in Computer Science,
pages 151–166. Springer-Verlag, 1998.

12. C.L. Quigley. A Programming Logic for Java Bytecode Programs. In D. Basin and
B. Wolff, editors, Proceedings of TPHOLs’03, volume 2758, pages 41–54, 2003.

13. M. Rinard. Credible compilation. Manuscript, 1999.
14. X. Rival. Abstract Interpretation-Based Certification of Assembly Code. In L.D.

Zuck, P.C. Attie, A.Cortesi, and S. Mukhopadhyay, editors, Proceedings of VM-
CAI’03, volume 2575 of Lecture Notes in Computer Science, pages 41–55, 2003.

15. X. Rival. Symbolic Transfer Functions-based Approaches to Certified Compilation.
In Proceedings of POPL’04, pages 1–13. ACM Press, 2004.

16. M. Wildmoser and T. Nipkow. Asserting bytecode safety. In S. Sagiv, editor, Pro-
ceedings of ESOP’05, volume 1210 of Lecture Notes in Computer Science. Springer-
Verlag, 2005.

A Logic for Analysing Subterfuge
in Delegation Chains

Hongbin Zhou and Simon N. Foley

Department of Computer Science,
University College Cork, Ireland
{zhou, s.foley}@cs.ucc.ie

Abstract. Trust Management is an approach to construct and inter-
pret the trust relationships among public-keys that are used to mediate
security-critical actions. Cryptographic credentials are used to specify
delegation of authorisation among public keys. Existing trust manage-
ment schemes are operational in nature, defining security in terms of spe-
cific controls such as delegation chains, threshold schemes, and so forth.
However, they tend not to consider whether a particular authorisation
policy is well designed in the sense that a principle cannot somehow by-
pass the intent of a complex series of authorisation delegations via some
unexpected circuitous route.

In this paper we consider the problem of authorisation subterfuge,
whereby, in a poorly designed system, delegation chains that are used
by principals to prove authorisation may not actually reflect the original
intention of all of the participants in the chain. A logic is proposed that
provides a systematic way of determining whether a particular delegation
scheme using particular authorisation is sufficiently robust to be able to
withstand attempts at subterfuge. This logic provides a new characteri-
sation of certificate reduction that, we argue, is more appropriate to open
systems.

1 Introduction

Many commercial access control systems are closed and tend to rely on cen-
tralised authorisation policy/servers. An access control decision corresponds to
determining whether some authenticated user has been authorised for the re-
quested operation. This strategy of first determining who the user is and then
whether that user is authorised has its critics, citing, for instance, single point of
failure, scalability issues and excessive administrative overhead. A perhaps over-
looked advantage of this approach is that administrators exercise tight control
when granting access. The administrators are familiar with all of the resources
that are available and they make sure that the user gets the appropriate permis-
sions; no more and no less. The opportunity to subvert the intentions of a good
administrator is usually small.

Cryptographic authorisation certificates bind authorisations to public keys
and facilitate a decentralised approach to access control in open systems. Trust

T. Dimitrakos et al. (Eds.): FAST 2005, LNCS 3866, pp. 127–141, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

128 H. Zhou and S.N. Foley

Management [15, 5, 9, 16, 1, 6] is an approach to constructing and interpreting the
trust relationships among public-keys that are used to mediate access control.
Authorisation certificates are used to specify delegation of authorisation among
public keys. Determining authorisation in these systems typically involves de-
termining whether the available certificates can prove that the key that signed
a request is authorised for the requested action.

However, these approaches do not consider how the authorisation was ob-
tained. They do not consider whether a principal can somehow bypass the intent
of a complex series of authorisation delegations via some unexpected circuitous
but authorised route. In an open system no individual has a complete picture of
all the resources and services that are available. Unlike the administrator of the
closed system, the principals of an open system are often ordinary users and are
open to confusion and subterfuge when interacting with resources and services.
These users may inadvertently delegate un-intended authorisation to recipients.

In this paper, we further explore the problem of authorisation subterfuge
[14], whereby, in a poorly designed system, delegation chains that are used by
principals to prove authorisation may not actually reflect the original intention of
all of the participants in the chain. For example, the intermediate principals of a
delegation chain may inadvertently issue incorrect certificates, when the intended
resource owner is unclear to intermediate participants in the chain. Existing
Trust Management approaches such as [1, 9, 16] avoid this issue by assuming
that all certificates are correctly in place, well understood by principals, and
may not be improperly used.

However, we argue that subterfuge is a realistic problem that should ad-
dressed in a certificate scheme. For example, the payment systems [2, 3, 12] are
vulnerable to authorisation subterfuge (leading to a breakdown in authorisation
accountability) if care is not taken to properly identify the ‘permissions’ indicat-
ing the payment authorisations when multiple banks and/or provisioning agents
are possible. In open systems, a permission for a resource should be uniquely
related back to the resource owner, and this relationship should be understood
by all related principals. If it is not well understood, then it may be subject
to authorisation subterfuge. Therefore, authorisation in open systems should in-
volve determining whether the available certificates can prove that the key that
signed a request was intentionally authorised for the service.

In this paper we propose the Subterfuge Logic (SL) which can be used for
analysing authorisation subterfuge. The logic is used to determine whether an
authorisation through a delegation chain can be uniquely related to its intended
resource and the resource owner.

The paper is organised as follows. In Section 2 we describe a series of sub-
terfuge attacks that can be carried out on certificate chains. Section 3 ex-
plores similarities between these attacks on certificates and replay attacks on
authentication protocols. Analysing a collection of certificates for potential sub-
terfuge is not unlike checking whether it is possible for an ‘intruder’ to interfere
with a certificate chain. Section 4 proposes the Subterfuge logic which can be
used to determine whether performing a delegation operation might leave the

A Logic for Analysing Subterfuge in Delegation Chains 129

delegator open to subterfuge. Examples from Section 2 are analysed in Section 5
and Section 6 illustrates how subterfuge can also arise in local naming. Finally,
we conclude in Section 7.

2 Authorisation Subterfuge

2.1 SPKI/SDSI Authorisation

SPKI/SDSI [9] relies on the cryptographic argument that a public key provides
a globally unique identifier that can be used to refer to its owner in some way.
However, public keys are not particularly meaningful to users and, therefore,
SPKI/SDSI provides local names which provide a consistent scheme for naming
keys relative to one another. For example, the local name that Alice uses for
Bob is (Alice’s Verisign’s Bob), which refers to Bob’s public key as certified by
the Versign that Alice knows. By binding local names to public keys with name
certificates, principals may delegate their authorisation to others beyond their
locality through a chain of local relationships.

A SPKI/SDSI name certificate is denoted as (K, A, S), where: K specifies the
certificate issuer’s signature key, and identifier A is defined as the local name
for the subject S. For example, (KB, Alice,KA) indicates that KB refers to KA

using the local name Alice. A SPKI/SDSI authorisation certificate is denoted as
(K, S, d, T), where: K specifies the certificate issuer’s signature key; tag T is the
authorisation delegated to subject S (by K) and d is the delegation bit (0/1).
For example, KB delegates authorisation T to Alice by signing (KB, Alice, 0,T),
where 0 indicates no further delegation. Note that for the sake of simplicity, in
this paper, we do not include a validity period V in certificates.

Authorisation tags are specified as s-expressions. For example, Example 2.6
in [10] specifies tag T1= tag (purchase(*range le <amount>),(*set <<items>>))
such that it

“[...] might indicate permission to issue a purchase order. The amount
of the purchase order is limited by the second element of the (purchase)
S-expression and, optionally, a list of purchasable items is given as the
third element. The company whose purchase orders are permitted to be
signed here will appear in the certificate permission chain leading to the
final purchase order. Specifically, that company’s key will be the issuer
at the head of the (purchase). [...]” [10]

2.2 Authorisation Examples

A company ComA permits its manager Emily to issue purchase orders, and
Emily may also delegate this right to others. Having received a certificate from
ComA, Emily delegates this right (issuing a purchase order) to an employee
Bob via Alice. We have the following certificates: C1=(KComA, KEmily, 1, T1);
C2=(KEmily, KAlice, 1, T1), and C3=(KAlice, KBob, 0, T1) (Alice delegates this
right to employee Bob, But Bob may not delegate this right to others).

130 H. Zhou and S.N. Foley

CC1 : KComA
C1 ��KEmily

C2 ��KAlice
C3 ��KBob

CC2 : KComB
C4 ��KClark

C5 ��KAlice
C6 ��KDavid

(a) certificate chain CC1 and CC2

KComA
��KEmily

��KAlice
��

��

KBob

KComB
��KClark

�����������

���������
KDavid

(b) delegation graph for T1

Fig. 1. Certificates in a Scenario

Suppose that there is another company ComB which also uses the tag T1 to
issue purchase orders. Suppose that Alice also works for ComB. Clark, a senior
manager in ComB, holds the right to issue purchase orders, and delegates
this right to Alice. ComB employee David accepts authority from Alice
to issue purchase orders. We have certificates: C4=(KComB, KClark, 1, T1);
C5=(KClark, KAlice, 1, T1), and C6=(KAlice, KDavid, 0, T1). Figure 1 depicts
the certificate chains CC1 and CC2 that Bob and David respectively use to
prove authority to issue purchase orders.

2.3 Authorisation Subterfuge

The examples above are effective when separate chains CC1 and CC2 are used to
prove authorisation. However, their combination, depicted in Figure 1(b), result
in further delegation chains CC3 and CC4 and these lead to some surprising
interpretations of how the authorisation was acquired.

CC3 : KComA
C1 ��KEmily

C2 ��KAlice
C6 ��KDavid

CC4 : KComB
C3 ��KClark

C4 ��KAlice
C5 ��KBob

Subterfuge 1: passive attack. Alice’s intention, when she signed C6, was
that David should use chain CC2 as proof of authorisation when making
purchases. However, unknown to Alice, dishonest David collects all other
certificates and uses the chain CC3 as his proof of authorisation.

This confusion may introduce problems if the certificate chains that are
used to prove authorisation are also used to provide evidence of who should be
billed for the transaction. In delegating, Alice believes that chain CC2 (from
ComB) provides the appropriate accountability for Clark’s authorisation.

Subterfuge 2: outer-active attack. The above passive attack can be trans-
formed into a more active attack. David sets up a shelf company ComB with

A Logic for Analysing Subterfuge in Delegation Chains 131

KComA
1 ��
3 ��KEmily

1 ��
3 ��KAlice

1 ��
4 ��

2

��
3

��

KBob

KComB 4 ��2 ��
KClark

4

��
2�����

�������

KDavid

(a) Certificate Chains

KComA
C1 ��KEmily

C2 ��KAlice
C3 ��

C6

��

KBob

KComB
C4 ��KClark

C5

������������
KDavid

(b) Passive Attack

KComA
C1 ��KEmily

C2 ��KAlice
C3 ��

C6

��

KBob

KComB
C4 ��KClark

C5

�����������
KDavid

(c) Outer-Active Attack

KComA
C1 ��

C7

����������� KEmily
C2 ��KAlice

C3 ��

C6

��

KBob

KComB
C4 ��KClark

C5

�����������
KDavid

(d) Inner-Active attack

KComA
C1 ��KEmily

C2 ��KAlice
C3 ��

C6

��

KBob

KComB
C4 ��KClark

C5

�����������
KDavid

(e) Outer-Intercept attack

KComA
C1 ��KEmily

C2 ��KAlice
C3 ��

C6

��

KBob

KComB
C4 ��KClark

C5

		����������
KDavid

(f) Inner-Outer Active Attack

Fig. 2. Attack graphs

fictitious employee Clark. Using attractive benefits, David masquerading as
Clark, lures Alice to join ComB. Clark delegates authorisations (T1) to
Alice that correspond to authorisation already held by Alice. However, Alice
does not realize this and, in the confusion, further delegates the authorisa-
tion to David; an authorisation from ComA that normally he would not be
expected to hold.

In both of these cases we think of Alice as more confused in her delegation
actions rather than incompetent; the permission naming scheme influences her
local beliefs and it was the inadequacy of this scheme that led to her confusion.
Perhaps Alice has too many certificates to manage and in the confusion looses
track of which permissions should be associated with which keys.
ComA may attack ComB in the same way to get the money back by CC4.

However, if ComB updates its certificate, then Alice does not hold the right for
ComB and ComA cannot get its money back.

Subterfuge 3: inner-active attack. Clark is a manager in ComA and ComB
and colludes with David (ComB employee). Clark delegates authorisation T1
legitimately obtained from ComB to Alice. However, suppose that unknown
to Alice, Clark is coincidentally authorised to do T1 by ComA (via C7) and
Clark intercepts the issuing of credential C1 and conceals it. Alice delegates
what she believes to be T1 from ComB to David via C6. However, David
can present chain [C7;C5;C6] as proof that his authorisation originated from
ComA.

132 H. Zhou and S.N. Foley

The above authorisation subterfuge may be avoided if Alice is very careful about
how she delegates. However the following attacks are a bit more difficult for Alice
to avoid.

Subterfuge 4: (outer-intercept attack). Clark intercepts certificate C2 and
conceals it. When delegating authorisation to David, Alice believes that the
chain is [C4;C5;C6] from ComB, however David knowingly or unknowingly
uses a different chain [C1;C2;C6].

Subterfuge 5: (inner-outer active attack). Alice has a legitimate expecta-
tion that so long as she delegates competently then she should not be liable
for any confusion that is a result of poor system/permission design. Alice
can use this view to act dishonestly. In signing a certificate she can always
deny knowledge of the existence of other certificates and the inadequacy
of permission naming in order to avoid accountability. While Alice secretly
owns company ComB, she claims that he cannot be held accountable for
the ‘confusion’ when Bob (an employee of ComA) uses the delegation chain
[C4;C5;C3] to place an order for Alice.

2.4 Avoiding Subterfuge: Accounting for Authorisation

The underlying problem with the examples in the previous section is that the
permission T1 is not sufficiently precise to permit Alice to distinguish the au-
thorisations that are issued by different principals. An ad-hoc strategy to avoid
this problem would be to ensure that each permission is sufficiently detailed to
avoid any ambiguity in the sense that it is clear from whom the authorisation
originated. This provides a form of accountability for the authorisation. For ex-
ample, including a company name as part of the permission may help avoid the
vulnerabilities in the particular example above.

However, at what point can a principal be absolutely sure that an ad-hoc
reference to a permission is sufficiently complete? Achieving this requires an
ability to be able to fix a permission within a global context, that is, to have
some form of global identifier and/or reference for the permission.

Public keys provide globally unique identifiers that are tied to the owner of
the key. These can also be used to avoid permission ambiguity within delegation
chains. For example, given authorisation certificate (KComA, KE , 1, [T1.KComA]),
there can be no possibility of subterfuge when Emily delegates to Alice with
(KE , KA, 1, [T1.KComA]). In this case the authorisation [T1.KComA] is globally
unique and the certificate makes the intention of the delegation and where it
came from (authorisation accountability) very clear.

SPKI [9] characterises the checking of authorisation as ”is principal X autho-
rised to do Y?”. However, the examples above illustrate that this is not suffi-
cient; we argue that checking ”is principal X authorised to do Y by Y’s owner
Z?” would be more appropriate.

Needless to say that this strategy does assume a high degree of competence on
Alice’s part to be able to properly distinguish between permissions [T1.KComA]
and [T1.KComB], where, for instance, each public key could be 342 characters

A Logic for Analysing Subterfuge in Delegation Chains 133

long (using a common ASCII encoding for a 2048 bit RSA key). One might be
tempted to use SDSI-like local names to make this task more manageable for
Alice. However, in order to prevent subterfuge, permissions require a name that
is unique across all name spaces where it will be used, not just the local name
space of Alice. In Alice’s local name space the permission [T1.(Emily’s ComA)]
may refer to a different ComA to the ComA that Alice knows.

Another possible source of suitable identifiers is a global X500-style naming
service (if it could be built) that would tie global identities to real world entities,
which would in turn be used within permissions. However, X500-style naming
approaches suffer from a variety of practical problems [7] when used to keep
track of the identities of principals. In the context of subterfuge, a principal
might easily be confused between the (non-unique) common name and the global
distinguished name contained within a permission that used such identifiers.

Certificate chains have been used in the literature to support degrees of ac-
countability of authorisation, for example, [3, 12, 2]. The micro-billing scheme [3]
uses KeyNote to help determine whether a micro-check (a KeyNote credential,
signed by a customer) should be trusted and accepted as payment by a merchant.
The originator of the chain is the provisioning agent, who is effectively respon-
sible for ensuring that the transaction is paid for. In [12], delegation credentials
are used to manage the transfer of micro-payment contracts between public keys;
delegation chains provide evidence of contract transfer and ensure accountability
for double-spending. These systems are vulnerable to authorisation subterfuge
(leading to a breakdown in authorisation accountability) if care is not taken to
properly identify the ‘permissions’ indicating the payment authorisations when
multiple banks and/or provisioning agents are possible.

3 Subterfuge in Satan’s Computer

Authorisation subterfuge is possible when one cannot precisely account for how
an authorisation is held. In signing a certificate, we assume that the signer is in
some way willing to account for the authorisation that they are delegating. The
authorisation provided by a certificate chain that is not vulnerable to subterfuge
can be accounted for by each signer in the chain. A principal who is concerned
about subterfuge will want to check that the permission that is about to be dele-
gated can also be accounted for by others earlier in the chain: the accountability
‘buck’ should preferably stop at the head of the chain!

We are interested in determining whether, given a collection of known certifi-
cates, it is safe for a principal to delegate some held authorisation to another
principal. By safe we mean that subterfuge is not possible. In simple terms, this
requires determining if it is possible for a malicious outsider to interfere with a
certificate chain with a view to influencing the authorisation accountability. In
order to help understand this we draw comparisons between subterfuge attacks
and attacks on authentication protocols. Our hypothesis is that techniques for
analysing one can be used to analyse the other (as we shall see in the next section
when we use a BAN-like logic to analyse subterfuge in delegation chains).

134 H. Zhou and S.N. Foley

A certificate is a signed message that is exchanged between principals; an
authentication protocol step can be an encrypted message that is exchanged
between principals. A certificate chain is an ordering of certificates exchanged
between principals. An authentication protocol is an ordering of encrypted mes-
sages exchanged between principals. For example, the chain CC1 could be rep-
resented by the following protocol.

msg1 ComA→ E : {KComA,KE, 1,T 1}KComA

msg2 E → A : {KE,KA, 1,T 1}KE

msg3 A→ B : {KA,KB, 0,T 1}KA

There are differences between authentication protocols and certificate chains. A
round of a typical authentication protocol has a fixed and small number of pre-
defined messages, while the number of participants and messages in a certificate
chain are unlimited and, sometimes, it may not be predetermined.

An attack from Section 2 is represented as follows.

msg2′. I(CA) → A : {KI ,KA, 1,T 1}KI

msg3′. A→ D : {KA,KD, 0,T 1}KA

Subterfuge attacks involve a malicious user (the intruder I) removing/hiding
and replaying certificates between different certificate chains. These actions are
comparable to a combination of the replay attacks [4]:

Freshness attack. “When a message (or message component) from a previous
run of a protocol is recorded by an intruder and replayed as a message
component in the current run of the protocol.”

Parallel session attack. “When two or more protocol runs are executed con-
currently and messages from one are used to form messages in another.”

The analysis of an authentication protocol typically centres around an analysis
of nonce properties: if one may correctly respond to the nonce challenge in a
round of an authentication protocol, it is the regular responder.

Freshness. A nonce is a number used once in a message. Message freshness
fixes a message as unique and ties it to a particular protocol run.

Relevancy to originator. A nonce is related to its originator. The nonce ver-
ifier is also the nonce provider (originator). The nonce originator generates
the nonce and this means that it can recognise and understand its relation-
ship with the nonce.

Relevance of message. In a two-party mutual authentication protocol, each
principal generates its own nonce. A principal uses its own nonce and the
other principal’s nonce to relate its own message to the other’s message.

There are some similarities between these nonce properties and the permission
properties that rely on unique permissions.

Uniqueness. is required in a permission string to account for its originator
within a particular certificate chain.

A Logic for Analysing Subterfuge in Delegation Chains 135

Relevancy to originator. A permission should be related to its originator and
it should be possible for others along the chain to recognise this relationship.

Relevance of certificates. Certificates can be used to delegate combinations
of permissions that originated from different sources. These new certificates
should be account for the authorisation of the originators.

Lowe [17] defines the correctness of authentication as:

“A protocol guarantees agreement to a participant B (say, as the
responder) for certain data items x if: each time a principal B com-
pletes a run of the protocol as responder using x, which to B appears
to be a run with A, then there is a unique run of the protocol with the
principal A as initiator using x, which to A appears to be a run with B.”

We characterise accountability of authorisation within a certificate chain as
follows.

A certificate chain guarantees the principal A’s accountability of
authorisation to a participant B (say, as the delegatee) for certain per-
mission R if: each time a principal B is delegated a right R, which to B
appears to be a certificate chain with A, then there is a unique certificate
chain with the principal A as initial delegator authorising R.

We use a BAN-style logic to reason about this notion of accountability of au-
thorisation.

4 A Logic for Analysing Certificate Chains

In the last thirty years, a variety of techniques for analysing authentication
protocols have been proposed. The previous section demonstrated similarities
between (freshness) vulnerabilities in authentication protocols and (subterfuge)
vulnerabilities in delegation chains. In this section we develop the Subterfuge
Logic (SL) which draws on some of the techniques from BAN-like logics to
analyse subterfuge in certificate chains.

4.1 The Language

The logic uses the following basic formulae. P , Q,R and S range over principals;
X represents a message, which can be data or formulae or both; φ will be used
to denote a formula. The basic formulae are the following:

– �(X): Formula X is a globally unique identifier. For example, this is typically
taken as true for X.500 distinguished names and for public keys.

– X |P : represents the message X , as guaranteed/accounted for by principal
P ; this means that P is willing to be held accountable for the consequences
of action X . For example, it is in Alice’s interest to delegate T1 |KComA to
Bob, as opposed to just T1.

136 H. Zhou and S.N. Foley

– X � P : Principal P is an originator of formula X . In the examples above,
we write T1|KComA to mean that permission T1 was first uttered by KComA

in some chain. Note that we assume that the same global unique formula
(permission) cannot originate from two different principals, that is, if X �

P , X � Q and �(X) then P = Q.
– P % X : P is authorised for the action X .
– P & X : P is authorised to delegate X to others.
– P ‖∼ X : P directly says X . This represents a credential that is directly

exchanged between principals.
– P |∼ X : P says X . P directly says X or others say X (who have been

delegated to speak on X by P).

Further formulae can be derived by using propositional logic. If φ1 and φ2 are
formulae, then φ1∧φ2 (φ1 and φ2), φ1∨φ2 (φ1 or φ2), and φ1 → φ2 are formulae.

SPKI/SDSI credentials can be encoded within the logic as follows. An au-
thorisation credential (K, S, 0, T) is represented as K ‖∼ (S % T), and credential
(K, S, 1, T) represented as K ‖∼ (S % T ∧ S & T). The purpose of the logic is
to permit a principal decide whether it would be safe for it to delegate an au-
thorisation based on the collection of credentials that it currently holds. For the
examples above, Alice would like to be able to test whether it is safe for her
to write a credential corresponding to KAlice ‖∼ (KDavid % T1). That is, she
wishes that someone further back on the chain will accept accountability for
the action, that is, KAlice & T1|KComA can be deduced (which is not possible
for the examples in Section 2). Note that in signing the credential, Alice is also
accepting accountability for the authorisation.

4.2 Inference Rules

Gaining Rules

G1. If P holds authorisation for X , for which Q can be held accountable, and
Q may delegate X then P is also authorised for X .

P % X |Q,Q & X

P % X

G2. We have a similar rule for authorisation to delegate.

P & X |Q,Q & X

P & X

Direct Delegation

D1. Direct delegation of authority assumes that the delegator accepts respon-
sibility for the action.

P ‖∼ (Q % X)
P |∼ (Q % X |P),Q % X |P

A Logic for Analysing Subterfuge in Delegation Chains 137

D2. We have a similar rule for authorisation to delegate.

P ‖∼ (Q & X)
P |∼ (Q & X |P),Q & X |P

D3. The usual conjunction rules apply.

P ‖∼ (φ1 ∧ φ2)
P ‖∼ φ1,P ‖∼ φ2

Indirect Delegation

I1. If principal P says that Q is authorised to perform an action X (with R
accountable), and P is authorised to delegate X (with R accountable), then
Q is authorised to perform X (with R accountable).

P |∼ (Q % X |R),P & X |R
Q % X |R

I2. We have a similar rule for authorisation to delegate.

P |∼ (Q & X |R),P & X |R
Q & X |R

I3. If principal P says that Q is authorised to perform action X by P , then P
says that Q is authorised to perform X .

P |∼ (Q % X |P)
P |∼ (Q % X)

I4. Accountability can be stripped from an authorisation. Note, however, that
stripping accountability does not refute the existence of the accountability.

P |∼ (Q & X |P)
P |∼ (Q & X)

I5. Accountability is transitive along certificate chains.

P |∼ (Q & X |R),R |∼ (P & X |S)
R |∼ (Q & X |S)

I6. We have a similar rule for authorisation.
P |∼ (Q % X |R),R |∼ (P & X |S)

R |∼ (Q % X |S)

Unique Origin Rules

U1. If Q is authorised for unique X that originated from P then P can be held
accountable for X .

�(X),X � P,Q % X
Q % X |P

U2. We have a similar rule for authorisation to delegate.

�(X),X � P,Q & X

Q & X |P

138 H. Zhou and S.N. Foley

5 Analysing Authorisation Subterfuge

The example from Section 2 is analysed using the Subterfuge Logic as follows.
Certificates C1 and C2 are encoded by the following formulae. Note that principal
names are abbreviated to their first initial if no ambiguity can arise.

KComA ‖∼ ((KE % T1) ∧ (KE & T1))
KE ‖∼ ((KA % T1) ∧ (KA & T1))

Assumptions regarding uniqueness include the following.

�(KComA), �(KComB), �(KA), �(KB), �(KC), �(KE)

Principal ComA is assumed authorised to delegate and accept accountability for
the authorisations T1 that it originates.

KComA & (T1 |KComA)

Before delegating authority for T1 to Bob, Alice wishes to test whether it is safe
to do so. Alice tests whether ComA accepts accountability for this action, that
is she attempts to deduce KA & T1 |KComA using the above assumptions within
the logic. This is not possible since no assumption is made regarding uniqueness
of T1, and, therefore, we cannot deduce KE |∼ (KA & T1 |KComA); thus Alice
refrains from the delegation.

In Trust Management public keys provide globally unique identifiers that
are tied to the owner of the key. These can also be used to avoid authorisation
ambiguity within delegation chains. For example, given SPKI certificate
(KComA, KE , 1, [T1.KComA]), there can be no possibility of subterfuge when
Emily delegates to Alice by signing the certificate (KE , KA, 1, [T1.KComA]). In
this case the authorisation [T1.KComA] is globally unique, that is �(T1|KComA)
and the certificate makes the intention of the delegation and accountability
very clear.

The revised certificates are represented in the logic as follows.

KComA ‖∼ ((KE % T1 |KComA) ∧ (KE & T1 |KComA))
KE ‖∼ ((KA % T1 |KComA) ∧ (KA & T1 |KComA))

Given these certificates then Alice can deduce

KA & T1 |KComA

and can safely delegate to Bob as

KA ‖∼ (KB % T1 |KComA)

and we can deduce that KB % T1 | KComA. Considering other certificates,
including

KComB ‖∼ ((KC % T1 |KComB) ∧ (KC & T1 |KComB))
KC ‖∼ ((KA % T1 |KComB) ∧ (KA & T1 |KComB))
KA ‖∼ (KD % T1 |KComB)

we can deduce KD % T1 |KComB, the expected authorisation.

A Logic for Analysing Subterfuge in Delegation Chains 139

Suppose that ComB issues confusing certificates to Clark, who in turn dele-
gates the incorrect authorisation to Alice.

KComB ‖∼ ((KC % T1 |KComA) ∧ (KC & T1 |KComA))
KC ‖∼ ((KA % T1 |KComA) ∧ (KA & T1 |KComA))

In this case we can deduceKComB |∼ (KA & T1 |KComA) and thus andKA & T1 |
KComB. However, before A delegates this right forKComA, she needs (but cannot
hold) the following formulae KComB & T1 |KComA, or KC & T1 |KComAs. Thus,
she should not delegate and therefore resists the subterfuge attack.

The conventional SPKI/SDSI authorisation certificate reduction rule can be
described as

P ‖∼ (Q & X) ∧Q |∼ (R & X)→ P |∼ (R & X)

in the SL logic (with a similar relationship for delegation of authorisation). Such
relationship does not facilitate the tracking of accountability during certificate
reduction.

6 Subterfuge in Local Names

Subterfuge is also possible when using local name certificates. Ellison and
Dohrmann [8] describe a model based on SPKI/SDSI name certificates for access
control in mobile computing platforms. A group leader controls all rights of a
group. A group leader may delegate the right “admitting members” to other
principals. For example, KG is a group leader; KG admits KA as its group mem-
ber by certificate C1. KG defines a large random number n, which will be used as
KA’s local name for KG’s member. Then, KG issues certificate C2 to KA which
means that if KA accepts a principal as (KA’s n), then the principal also be-
comes KG’s group G’s member. KA admits KB as KA’s n by C3. Together with
C2, KB also becomes a member of KG’s G as presented in C4. The certificates
are as follows.

C1 = (KG, G, KA); C2 = (KG, G, (K′
As n)); C3 = (KA, n, KB)

From these we can deduce (KG, G, KB), that is, KB is now a member of group G.
The scheme works in a decentralised manner and thus no single member will

hold the entire membership list. This means that there is no easy way to prove
non-membership. The strategy described in the paper is sufficiently robust as it
relies on face-to-face verification of certificate C2 when a member joins.

However, the nonce is large and there may be potential for confusion dur-
ing the face-to-face verification and this can lead to subterfuge. Consider the
following certificates.

C′
1 = (KI, GI, KA); C′

2 = (KI, GI, (K′
As n)); C′

3 = (KA, n, KI)

Suppose that the intruder KI wants to join KG’s group G. KI intercepts C2
and issues C′

2 by using the number in C2. In the confusion, KA issues C′
3 which

140 H. Zhou and S.N. Foley

corresponds to admitting KC (which the intruder controls) as a member of KI ’s
GI for KA. In this case, KC may use C2 and C′

3 to prove its membership in
KG’s group G.

7 Conclusions

In this paper we described how poorly characterised permissions within crypto-
graphic credentials can lead to authorisation subterfuge during delegation oper-
ations. This subterfuge results in a vulnerability concerning the accountability of
the authorisation provided by a delegation chain: does the delegation operations
in the chain reflect the true intent of the participants?

The challenge here is to ensure that permissions can be referred to in a man-
ner that properly reflects their context. Since permissions are intended to be
shared across local name spaces then their references must be global. In the pa-
per we discuss some ad-hoc strategies to ensure globalisation of permissions. In
particular, we consider the use of global name services and public keys as the
sources of global identifiers.

The Subterfuge Logic proposed in this paper provides a systematic way of
determining whether a particular delegation scheme using particular ad-hoc per-
missions is sufficiently robust to be able to withstand attempts at subterfuge.
This logic provides a new characterisation of certificate reduction that, we argue,
is more appropriate to open systems. We believe that it will be straightforward
to extend the Subterfuge Logic to consider subterfuge in SDSI-like local names
(as considered in Section 6).

Trust Management, like many other protection techniques, provide operations
that are used to control access. As with any protection mechanism the challenge
is to make sure that the mechanisms are configured in such a way that they
ensure some useful and consistent notion of security. Subterfuge logic helps to
provide assurance that a principal cannot bypass security via some unexpected
but authorised route. This general goal of analysing unexpected but authorised
access is not limited to just certificate schemes. Formal techniques that analyse
whether a particular configuration of access controls is effective is considered in
[11, 13]; strategies such as well formed transactions, separation of duties and pro-
tection domains help to ensure that a system is sufficiently robust to a malicious
principle. We are currently exploring how the subterfuge logic can be extended
to include such robustness building strategies.

Acknowledgements

This work is supported by the UCC Centre for Unified Computing under the
Science Foundation Ireland WebComG project and by Enterprise Ireland Basic
Research Grant Scheme (SC/2003/007).

A Logic for Analysing Subterfuge in Delegation Chains 141

References

1. M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The keynote trust-
management system, version 2, September 1999. IETF RFC 2704.

2. M. Blaze, J. Ioannidis, S. Ioannidis, A. Keromytis, P. Nikander, and V. Prevelakis.
Tapi: Transactions for accessing public infrastructure. In Proceedings of the 8th
IFIP Personal Wireless Communications (PWC) Conference, 2003.

3. M. Blaze, J. Ioannidis, and A. D. Keromytis. Offline micro-payments without
trusted hardware. In Financial Cryptography, Grand Cayman, February 2001.

4. J. A. Clark and J. L. Jacob. A survey of authentication protocol literature, version
1.0. In http://www.cs.york.ac.uk/jac/, 1997.

5. D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L. Rivest. Cer-
tificate chain discovery in spki/sdsi. Journal of Computer Security, 9(4):285–322,
2001.

6. J. DeTreville. Binder, a logic-based security language. In Proceedings of the 2002
IEEE Symposium on Research in Security and Privacy, pages 105–113. IEEE Com-
puter Society Press, 2002.

7. C. Ellison. The nature of a usable PKI. Computer Networks, 31:823–830, 1999.
8. C. Ellison and S. Dohrmann. Public-key support for group collaboration. ACM

Transactions on Information and System Security (TISSEC), 6(4):547–565, 2003.
9. C. Ellison, B. Frantz, B. Lampson, R. L. Rivest, B. Thomas, and T. Ylonen. Spki

certificate theory, September 1999. IETF RFC 2693.
10. C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M. Thomas, and T. Ylonen.

Spki examples, September 1998.
11. S. Foley. A non-functional approach to system integrity. IEEE Journal on Selected

Areas in Communications, 21(1), Jan 2003.
12. S. Foley. Using trust management to support transferable hash-based micropay-

ments. In Proceedings of the 7th International Financial Cryptography Conference,
Gosier, Guadeloupe, FWI, January 2003.

13. S. Foley. Believing in the integrity of a system. In IJCAR Workshop on Auto-
mated Reasoning for Security Protocol Analysis. Springer Verlag Electronic Notes
in Computer Science, 2004.

14. S. N. Foley and H. Zhou. Authorisation subterfuge by delegation in decentralised
networks. In International Security Protocols Workshop, Cambridge, UK, April
2005.

15. R. Housley, W. Polk, W. Ford, and D. Solo. Internet x.509 public key infrastructure
certificate and certificate revocation list (crl) profile, April 2002.

16. N. Li et al. Beyond proof-of-compliance: Safety and availability analysis in trust
management. In Proceedings of 2003 IEEE Symposium on Security and Privacy.
IEEE, 2003.

17. G. Lowe. A hierarchy of authentication specifications. In PCSFW: Proceedings
of The 10th Computer Security Foundations Workshop. IEEE Computer Society
Press, 1997.

Probable Innocence Revisited�

Konstantinos Chatzikokolakis and Catuscia Palamidessi

INRIA Futurs and LIX, École Polytechnique
{kostas, catuscia}@lix.polytechnique.fr

Abstract. In this paper we study probable innocence, a notion of probabilistic
anonymity provided by protocols such as Crowds. The authors of Crowds, Reiter
and Rubin, gave a definition of probable innocence which later has been inter-
preted by other authors in terms of the probability of the users from the point of
view of the observer. This formalization however does not seem to correspond
exactly to the property that Reiter and Rubin have shown for Crowds, the latter,
in fact, is independent from the probability of the users.

We take the point of view that anonymity should be a concept depending only
on the protocol, and should abstract from the probabilities of the users. For strong
anonymity, this abstraction leads to a concept known as conditional anonymity.
The main goal of this paper is to establish a notion which is to probable innocence
as conditional anonymity is to strong anonymity. We show that our definition,
while being more general, corresponds exactly to the property that Reiter and
Rubin have shown for Crowds, under specific conditions. We also show that in
the particular case that the users have uniform probabilities we obtain a property
similar to the definition of probable innocence given by Halpern and O’Neill.

1 Introduction

Often we wish to ensure that the identity of the user performing a certain action is
maintained secret. This property is called anonymity. Examples of situations in which
we may wish to provide anonymity include: publishing on the web, retrieving informa-
tion from the web, sending a message, etc. Many protocols have been designed for this
purpose, for example, Crowds [1], Onion Routing [2], the Free Haven [3], Web MIX
[4] and Freenet [5].

Most of the protocols providing anonymity use random mechanisms. Consequently,
it is natural to think of anonymity in probabilistic terms. Various notions of probabilis-
tic anonymity have been proposed in the literature, at different levels of strength. The
notion of anonymity in [6], called conditional anonymity in [7, 8], and investigated also
in [9], describes the ideal situation in which the protocol does not leak any information
concerning the identity of the user. This property is satisfied for instance by the Dining
Cryptographers with fair coins [6]. Protocols used in practice, however, especially in
presence of attackers or corrupted users, are only able to provide a weaker notion of
anonymity.

In [1] Reiter and Rubin have proposed an hierarchy of notions of probabilistic
anonymity in the context of Crowds. We recall that Crowds is a system for anonymous

� This work has been partially supported by the Project Rossignol of the ACI Sécurité Informa-
tique (Ministère de la recherche et nouvelles technologies).

T. Dimitrakos et al. (Eds.): FAST 2005, LNCS 3866, pp. 142–157, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Probable Innocence Revisited 143

web surfing aimed at protecting the identity of the users when sending (originating)
messages. This is achieved by forwarding the message to another user selected ran-
domly, which in turn forwards the message, and so on, until the message reaches its
destination. Part of the users may be corrupted (attackers), and one of the main pur-
poses of the protocol is to protect the identity of the originator of the message from
those attackers.

Quoting from [1], the hierarchy is described as follows. Here the sender stands for
the user that forwards the message to the attacker.

Beyond suspicion. From the attacker’s point of view, the sender appears no more likely
to be the originator of the message than any other potential sender in the system.

Probable innocence. From the attacker’s point of view, the sender appears no more
likely to be the originator of the message than to not be the originator.

Possible innocence. From the attacker’s point of view, there is a nontrivial probability
that the real sender is someone else.

In [1] probable innocence was also expressed with a precise mathematical formula and
proved to hold for Crowds under certain conditions. Also, Halpern and O’Neill have
proposed a formal interpretation of the notions above in [8]. In particular, the definition
they give for probable innocence is that, if a user i has been the originator, then the prob-
ability for the attacker that i is the originator is smaller than 1/2. However, the property
of probable innocence that Reiter and Rubin express formally and prove for the sys-
tem Crowds in [1] does not mention the user’s probability of being the originator, but
only the probability of the event observed by the attacker. More precisely, the property
proved for Crowds is that the probability that the originator forwards the message to an
attacker (given that an attacker receives eventually the message) is smaller than 1/2.

The property proved for Crowds in [1] depends only on the way the protocol works,
and on the number of the attackers. It is totally independent from the probability of each
user to be the originator. This is of course a very desirable property, since we do not
want the correctness of a protocol to depend on the users’ intentions of originating a
message. For stronger notions of anonymity, this abstraction from the users’ probabil-
ities leads to the notion of probabilistic anonymity defined in [9], which is equivalent
to the conditional anonymity defined in [7, 8]. Note that this definition is different from
the notion of strong probabilistic anonymity given in [7, 8]: the latter depends, again,
on the probabilities of the users.

Another intended feature of our notion of probable innocence is the abstraction from
the specific characteristics of Crowds. In Crowds, there are certain symmetries that
derive from the assumption that the probability that user i forwards the message to user
j is the same for all i and j. The property of probable innocence proved for Crowds
depends strongly on this assumption. We want a general notion that has the possibility
to hold even in protocols which do not satisfy the Crowds’ symmetries.

1.1 Contribution

The main goal of this paper is to establish a general notion of probable innocence which,
like probabilistic anonymity, is independent from the probabilities of the users. We
show that our definition, while being more general, corresponds exactly to the property

144 K. Chatzikokolakis and C. Palamidessi

that Reiter and Rubin have proved for Crowds, under the specific symmetry conditions
which are satisfied by Crowds. We also show that in the particular case that the users
have uniform probability of being the originator, we obtain a property similar to the
definition of probable innocence given by Halpern and O’Neill.

1.2 Plan of the Paper

In next section we recall some notions which are used in the rest of the paper: the Prob-
abilistic Automata, the framework for anonymity developed in [9], and the definition
of (strong) probabilistic anonymity given in [9]. In Section 3 we illustrate the Crowds
protocol, we recall the property proved for Crowds and the definition of probable in-
nocence by Halpern and O’Neill, and we discuss them. In Section 4 we propose our
notion of probable innocence and we compare with those of Section 3. The full version
of this paper, including the proofs of all propositions, can be found in [10].

2 Preliminaries

2.1 Probabilistic Automata

In our approach we consider systems that can perform both probabilistic and nonde-
terministic choice. Intuitively, a probabilistic choice represents a set of alternative tran-
sitions, each of them associated to a certain probability of being selected. The sum of
all probabilities on the alternatives of the choice must be 1, i.e. they form a probabil-
ity distribution. Nondeterministic choice is also a set of alternatives, but we have no
information on how likely one alternative is selected.

There have been many models proposed in literature that combine both nondetermin-
istic and probabilistic choice. One of the most general is the formalism of probabilistic
automata proposed in [11]. In this work we use this formalism to model anonymity
protocols. We give here a brief description of it.

A probabilistic automaton consists in a set of states, and labeled transitions between
them. For each node, the outgoing transitions are partitioned in groups called steps.
Each step represents a probabilistic choice, while the choice between the steps is non-
deterministic.

Figure 1 illustrates some examples of probabilistic automata. We represent a step by
putting an arc across the member transitions. For instance, in (a), state s1 has two steps,
the first is a probabilistic choice between two transitions with labels a and b, each with
probability 1/2. When there is only a transition in a step, like the one from state s3 to
state s6, the probability is of course 1 and we omit it.

In this paper, we use only a simplified kind of automaton, in which from each node
we have either a probabilistic choice or a nondeterministic choice (more precisely, either
one step or a set of singleton steps), like in (b). In the particular case that the choices
are all probabilistic, like in (c), the automaton is called fully probabilistic.

Given an automatonM , we denote by etree(M) its unfolding, i.e. the tree of all pos-
sible executions of M (in Figure 1 the automata coincide with their unfolding because
there is no loop). If M is fully probabilistic, then each execution (maximal branch) of
etree(M) has a probability obtained as the product of the probability of the edges along

Probable Innocence Revisited 145

s2

s1 s1 s1

1/2

a

bc
1/2

1/2

1/3

2/3

c

c

b a
1/2

s3

s6

s5

s4

s8s7

(a)

a
b

c

a c

a

a

b
c

c
1/2 1/2 1/21/2

1/2

1/3

1/6

(b) (c)

Fig. 1. Examples of probabilistic automata

the branch. In the finite case, we can define a probability measure for each set of execu-
tions, called event, by summing up the probabilities of the elements1. Given an event x,
we will denote by p(x) the probability of x. For instance, let the event c be the set of all
computations in which c occurs. In (c) its probability is p(c) = 1/3×1/2+1/6 = 1/3.

When nondeterminism is present, the probability can vary, depending on how we
resolve the nondeterminism. In other words we need to consider a function ς that, each
time there is a choice between different steps, selects one of them. By pruning the non-
selected steps, we obtain a fully probabilistic execution tree etree(M, ς) on which we
can define the probability as before. For historical reasons (i.e. since nondeterminism
typically arises from the parallel operator), the function ς is called scheduler.

It should then be clear that the probability of an event is relative to the particular
scheduler. We will denote by pς(x) the probability of the event x under the scheduler ς .
For example, consider (a). We have two possible schedulers determined by the choice
of the step in s1. Under one scheduler, the probability of c is 1/2. Under the other, it
is 2/3 × 1/2 + 1/3 = 2/3. In (b) we have three possible schedulers under which the
probability of c is 0, 1/2 and 1, respectively.

2.2 Anonymity Systems

The concept of anonymity is relative to the set of anonymous users and to what is visible
to the observer. Hence, following [12, 13] we classify the actions of the automaton into
the three sets A,B and C as follows:

– A is the set of the anonymous actions A = {a(i) | i ∈ I} where I is the set of the
identities of the anonymous users and a is an injective function from I to the set
of actions, which we call abstract action. We also call the pair (I, a) anonymous
action generator.

– B is the set of the observable actions. We will use b, b′, . . . to denote the elements
of this set.

– C is the set of the remaining actions (which are unobservable).

1 In the infinite case things are more complicated: we cannot define a probability measure for all
sets of execution, and we need to consider as event space the σ-field generated by the cones of
etree(M). However, in this paper, we consider only the finite case.

146 K. Chatzikokolakis and C. Palamidessi

Note that the actions inA normally are not visible to the observer, or at least, not for the
part that depends on the identity i. However, for the purpose of defining and verifying
anonymity we model the elements of A as visible outcomes of the system.

Definition 1. An anonymity system is a tuple (M, I, a,B,Z , p), where M is a proba-
bilistic automaton, (I, a) is an anonymous action generator, B is a set of observable
actions, Z is the set of all possible schedulers for M , and for every ς ∈ Z , pς is the
probability measure on the event space generated by etree(M, ς).

For simplicity, we assume the users to be the only possible source of nondeterminism
in the system. If they are probabilistic, then the system is fully probabilistic, hence Z is
a singleton and we omit it.

We introduce the following notation to represent the events of interest:

– a(i) : all the executions in etree(M, ς) containing the action a(i);
– a : all the executions in etree(M, ς) containing an action a(i) for an arbitrary i;
– o : all the executions in etree(M, ς) containing as their maximal sequence of ob-

servable actions the sequence o (where o is of the form b1b2 . . . bn for some b1,
b2, . . . , bn ∈ B). We denote by O (observables) the set of all such o’s.

We use the symbols ∪, ∩ and ¬ to represent the union, the intersection, and the com-
plement of events, respectively.

We wish to keep the notion of observables as general as possible, but we still need to
make some assumptions on them. First, we want the observables to be disjoint events.
Second, they must cover all possible outcomes. Third, an observable o must indicate
unambiguously whether a has taken place or not, i.e. it either implies a, or it implies
¬a. In set-theoretic terms it means that either o is a subset of a or of the complement of
a. Formally2:

Assumption 1 (on the observables)

1. ∀ς ∈ Z . ∀o1, o2 ∈ O. o1 = o2 ⇒ pς(o1 ∪ o2) = pς(o1) + pς(o2)
2. ∀ς ∈ Z . pς(O) = 1
3. ∀ς ∈ Z . ∀o ∈ O. (pς(o ∩ a) = pς(o)) ∨ pς(o ∩ ¬a) = pς(o)

Analogously, we need to make some assumption on the anonymous actions. We
consider first the conditions tailored for the nondeterministic users: each scheduler
determines completely whether an action of the form a(i) takes place or not, and in
the positive case, there is only one such i. Formally:

Assumption 2 (on the anonymous actions, for nondeterministic users)

∀ς ∈ Z . pς(a) = 0 ∨ (∃i ∈ I. (pς(a(i)) = 1 ∧ ∀j ∈ I. j = i⇒ pς(a(j)) = 0))

2 Note that the intuitive explanations here are stronger than the corresponding formal assump-
tions because, in the infinite case, there could be non-trivial sets of measure 0. However in the
case of anonymity we usually deal with finite scenarios. In any case, these formal assumptions
are enough for the ensuring the properties of the anonymity notions that we need in this paper.

Probable Innocence Revisited 147

We now consider the case in which the users are fully probabilistic. The assumption
on the anonymous actions in this case is much weaker: we only require that there be at
most one user that performs a, i.e. a(i) and a(j) must be disjoint for i = j. Formally:

Assumption 3 (on the anonymous actions, for probabilistic users)

∀i, j ∈ I. i = j ⇒ p(a(i) ∪ a(j)) = p(a(i)) + p(a(j))

2.3 Strong Probabilistic Anonymity

In this section we recall the notion of strong anonymity proposed in [9].
Let us first assume that the users are nondeterministic. Intuitively, a system is

strongly anonymous if, given two schedulers ς and ϑ that both choose a (say a(i) and
a(j), respectively), it is not possible to detect from the probabilistic measure of the
observables whether the scheduler has been ς or ϑ (i.e. whether the selected user was
i or j).

Definition 2. A system (M, I, a,B,Z , p) with nondeterministic users is anonymous if

∀ς,ϑ ∈ Z . ∀o ∈ O. pς(a) = pϑ(a) = 1 ⇒ pς(o) = pϑ(o)

The probabilistic counterpart of Definition 2 can be formalized using the concept of
conditional probability. Recall that, given two events x and y with p(y) > 0, the con-
ditional probability of x given y, denoted by p(x | y), is equal to p(x ∩ y)/p(y).

Definition 3. A system (M, I, a,B, p) with probabilistic users is anonymous if

∀i, j ∈ I. ∀o ∈ O. (p(a(i)) > 0 ∧ p(a(j)) > 0)⇒ p(o | a(i)) = p(o | a(j))

The notions of anonymity illustrated so far focus on the probability of the observables.
More precisely, it requires the probability of the observables to be independent from the
selected user. In [9] it was shown that Definition 3 is equivalent to the notion adopted
implicitly in [6], and called conditional anonymity in [7]. As illustrated in the intro-
duction, the idea of this notion is that a system is anonymous if the observations do
not change the probability of the a(i)’s. In other words, we may know the probability
of a(i) by some means external to the system, but the system should not increase our
knowledge about it.

Proposition 1 ([9]). A system (M, I, a,B, p) with probabilistic users is anonymous iff

∀i ∈ I. ∀o ∈ O. p(o ∩ a) > 0 ⇒ p(a(i) | o) = p(a(i) | a)

Note 1. To be precise, the probabilistic counterpart of Definition 2 should be stronger
than that given in Definition 3, in fact it should be independent from the probabilities
of the users, like Definition 2 is. We could achieve this by assuming the system to be
parametric with respect to the probability distribution of the users, and then require
the formula to hold for every possible distribution. Proposition 1 should be modified
accordingly.

148 K. Chatzikokolakis and C. Palamidessi

Note 2. The large number of anonymity definitions often leads to confusion. In the
rest of the paper we will refer to Definition 3 as (strong) probabilistic anonymity. By
conditional anonymity we will refer to the condition in Proposition 1 which corresponds
to the definition of Halpern and O’Neill ([7]). Finally by strong anonymity we will refer
to the corresponding definition in [7] which can be expressed as:

∀i, j ∈ I. ∀o ∈ O : p(a(i) | o) = p(a(j) | o) (1)

3 Probable Innocence

Strong and conditional anonymity are notions which are usually difficult to achieve
in practice. For instance, in the case of protocols like Crowds, the originator needs to
take some initiative, thus revealing himself to the attacker with greater probability than
the rest of the users. As a result, more relaxed levels of anonymity, such as probable
innocence, are provided by real protocols.

3.1 The Crowds Protocol

This protocol, presented in [1], allows Internet users to perform web transactions with-
out revealing their identity. The idea is to randomly route the request through a crowd of
users. Thus when the web server receives the request he does not know who is the origi-
nator since the user who sent the request to the server is simply forwarding it. The more
interesting case, however, is when an attacker is a member of the crowd and participates
in the protocol. In this case the originator is exposed with higher probability than any
other user and strong anonymity cannot be achieved. However, it can be proved that
Crowds provides probable innocence under certain conditions.

More specifically a crowd is a group of m users who participate in the protocol.
Some of the users may be corrupted which means they can collaborate in order to reveal
the identity of the originator. Let c be the number of such users and pf a parameter of
the protocol, explained below. When a user, called the initiator or originator, wants to
request a web page he must create a path between him and the server. This is achieved
by the following process:

– The initiator selects randomly a member of the crowd (possibly himself) and for-
wards the request to him. We will refer to this latter user as the forwarder.

– A forwarder, upon receiving a request, flips a biased coin. With probability 1 − pf

he delivers the request directly to the server. With probability pf he selects ran-
domly, with uniform probability, a new forwarder (possibly himself) and forwards
the request to him. The new forwarder repeats the same procedure.

The response from the server follows the same route in the opposite direction to return to
the initiator. It must be mentioned that all communication in the path is encrypted using
a path key, mainly to defend against local eavesdroppers (see [1] for more details). In
this paper we are interested in attacks performed by corrupted members of the crowd
to reveal the initiator’s identity. Each member is considered to have only access to the
traffic routed through him, so he cannot intercept messages addressed to other members.

Probable Innocence Revisited 149

3.2 Definition of Probable Innocence

Probable innocence is verbally defined by Reiter and Rubin ([1]) as “the sender (the user
who forwards the message to the attacker) appears no more likely to be the originator
than not to be the originator”. Two different approaches to formalize this notion exist,
the first focuses on the probability of the observables and the second on the probability
of the users.

First approach (focus on the probability of the observables): Reiter and Rubin ([1])
give a definition which considers the probability of the originator being observed by a
corrupted member, that is being directly before him in the path. Let I denote the event
“the originator is observed by a corrupted member” and H1+ the event “at least one
corrupted member appears in the path”. Then probable innocence can be defined as

p(I |H1+) ≤ 1/2 (2)

In [1] it is proved that this property is satisfied by Crowds if n ≥ pf

pf−1/2 (c + 1).
For simplicity, we suppose that a corrupted user will not forward a request to other

crowd members, so at most one user can be observed. This approach is also followed in
[1, 14, 15] and the reason is that by forwarding the request the corrupted users cannot
gain any new information since forwarders are chosen randomly.

We now express the above definition in the framework of this paper (Section 2.2).
Since I ⇒ H1+ we have p(I |H1+) = p(I)/p(H1+). If Ai denotes that “user i is
the originator” and Di is the event “the user i was observed by a corrupted member
(appears in the path right before the corrupter member)” then p(I) =

∑
i p(Di∧Ai) =∑

i p(Di |Ai)p(Ai). Since p(Di |Ai) is the same for all i then the definition (2) can be
written ∀i : p(Di |Ai)/P (H1+) ≤ 1/2.

Let A be the set of all crowd members and O = {oi | i ∈ A} the set of observables.
Essentially a(i) denotes Ai and oi denotes Di. Note that Di is an observable since it
can be observed by a corrupted user (remember that corrupted users share their infor-
mation). Also let h =

∨
i∈A oi, meaning that some user was observed. The definition

(2) can now be written:

∀i ∈ A : p(oi | a(i)) ≤
1
2
p(h) (3)

This is indeed an intuitive definition for Crowds. However there are many questions
raised by this approach. For example, we are only interested in the probability of one
specific event, what about other events that might reveal the identity of the initiator?
For example the event ¬oi will have probability greater than p(h)/2, is this important?
Moreover, consider the case where the probability of oi under a different initiator j is
negligible. Then, if we observe oi, isn’t it more probable that user i sent the message,
even if p(oi | a(i)) is less than p(h)/2?

If we consider arbitrary protocols, then there are cases where the condition (3) does
not express the expected properties of probable innocence. We give two examples of
such systems in 2 and we explain them below.

Example 1. On the left-hand side of figure 2, m users are participating in a Crowds-
like protocol. The only difference, with respect to the standard Crowds, is that user

150 K. Chatzikokolakis and C. Palamidessi

o1 o2 · · · om

a(1) c
m−pf

l · · · l

a(2) 0
...

... m-1 Crowd

a(m) 0

o1 o2 o3

a(1) 2/3 1/6 1/6

a(2) 2/3 1/6 1/6

a(3) 2/3 1/6 1/6

Fig. 2. Examples of arbitrary (non symmetric) protocols. The value at position i, j represents
p(oj | a(i)) for user i and observable oj .

1 is behind a firewall, which means that he can send messages to any other user but
he cannot receive messages from any of them. In the corresponding table we give the
conditional probabilities p(oj | a(i)), where we recall that oj means that j is the user
who sends the message to the corrupted member, and a(i) means that i is the initiator.
When user 1 is the initiator the probability of observing him is c

m−pf
(there is a c/m

chance that user 1 sends the message to a corrupted user and there is also a chance
that he forwards it to himself and sends it to a corrupted user in the next round). All
other users can be observed with the same probability l. When any other user is the
initiator, however, the probability of observing user 1 is 0, since he will never receive
the message. In fact, the protocol will behave exactly like a Crowd of m− 1 users as it
is shown in the table.

Note that Reiter and Rubin’s definition (3) requires the diagonal of this table to be
less than p(h)/2. In this example the definition holds provided that m − 1 ≥ pf

pf−1/2
(c + 1). In fact, for all users i = 1, p(oi | a(i)) is the same as in the original Crowds
(which satisfies the definition) and for user 1 it is even smaller. However, probable
innocence is violated. If a corrupted member observes user 1 he can be sure that he is the
initiator since no other initiator leads to the observation of user 1. Indeed p(a(1) | o1) =
1. But this is against our intuition of probable innocence.

Example 2. On the left-hand side we have an opposite counter-example. Three users
want to communicate with a web server, but they can only access it through a proxy.
We suppose that all users are honest but they do not trust the proxy so they do not
want to reveal their identity to him. So they use the following protocol: the initiator
first forwards the message to one of the users 1, 2 and 3 with probabilities 2/3, 1/6
and 1/6 respectively, regardless of which is the initiator. The user who receives the
message forwards it to the proxy. The probabilities of observing each user are shown

Probable Innocence Revisited 151

in the corresponding table. Regardless of which is the initiator, user 1 will be observed
with probability 2/3 and the others with probability 1/6 each.

In this example Reiter and Rubin’s definition does not hold since p(o1 | a(1)) > 1/2.
However all users produce the same observables with the same probabilities hence we
cannot distinguish between them. Indeed the system is strongly anonymous (Definition
3 holds)! Thus, in the general case, we cannot adopt (3) as the definition of probable
innocence since we want such a notion to be implied by strong anonymity.

However, it should be noted that in the case of Crowds the definition of Reiter and Rubin
is correct, because of a special symmetry property of the protocol. This is discussed in
detail in Section 4.1.

Finally, note that the above definition does not mention the probability of any user.
We are only interested in the probability of the event oi given the fact that i is the
initiator. The user itself might have a very small or very big probability of initiating
the message. This is a major difference with respect to the next approach.

Second approach (focus on the probability of the users): Halpern and O’Neill pro-
pose in [7] a general framework for defining anonymity properties. We give a very
abstract idea of this framework, detailed information is available in [7]. In this frame-
work a system consists of a group of agents, each having a local state at each point of
the execution. The local state contains all information that the user may have and does
not need to be explicitly defined. At each point (r, m) user i can only have access to
his local state ri(m). So he does not know the actual point (r, m) but at least he knows
that it must be a point (r′, m′) such that r′i(m

′) = r′i(m
′). Let Ki(r, m) be the set of

all these points. If a formula φ is true in all points of Ki(r, m) then we say that i knows
φ. In the probabilistic setting it is possible to create a measure on Ki(r, m) and draw
conclusions of the form “formula φ is true with probability p”.

To define probable innocence we first define a formula θ(i, a) meaning “user i per-
formed the event a”. We then say that a system has probable innocence if for all points
(r, m), the probability of θ(i, a) in this point for all users j (that is, the probability that
arises by measuring Kj(r, m)) is less that one half.

This definition can be expressed in the framework of Section 2.2. The probability
of a formula φ for user j at the point (r, m) depends only on the set Kj(r, m) which
itself depends only on rj(m). The latter is the local state of the user, that is the only
things that he can observe. In our framework this corresponds to the observables of
the probabilistic automaton. Thus, we can reformulate the definition of Halpern and
O’Neill as:

∀i ∈ I, ∀o ∈ O : p(a(i) | o) ≤ 1/2 (4)

This definition is similar to the one of Reiter and Rubin but not the same. The difference
is that it considers the probability of the user given an observation, not the opposite. If
this probability is less that one half then intuitively i appear less likely to have per-
formed o than not to.

The problem with this definition is that the probabilities of the users are not part
of the system and we can make no assumptions about them. Consider for example
the case where we know that user i visits very often a specific web site, so even if
we have 100 users, the probability that he performed a request to this site is 0.99. Then

152 K. Chatzikokolakis and C. Palamidessi

we cannot expect this probability to become less than one half under all observations.
A similar remark about strong anonymity led Halpern and O’Neill to define conditional
anonymity. If a user i has higher probability of performing an action than user j then
we cannot expect this to change because of the system. Instead we can request that the
system does not provide any new information about the originator of the action.

4 A New Definition of Probable Innocence

In this section we give a new definition of probable innocence that generalizes the exist-
ing ones by abstracting from the probabilities of the users. These probabilities, although
they affect the probability measure p of the anonymity system, are not part of the pro-
tocol and can vary in different executions. To model this fact, let u be a probability
measure on the set I of anonymous users. Then, we suppose that the anonymity system
is equipped with a probability measure pu, which depends on u, satisfying the following
conditions:

pu(a(i)) = u(i) (5)

pu(o | a(i)) = pu′(o | a(i)) (6)

for all users i, observables o and user distributions u,u′ such that u(i) > 0,u′(i) > 0.
Condition (5) requires that the selection of user is made using the distribution u. Con-
dition (6) requires that, having selected a user, the distribution u does not affect the
probability of any observable o. In other words u is used to select a user and only for
that. This is typical in anonymity protocols where a user is selected in the beginning
(this models the user’s decision to send a message) and then some observables are pro-
duced that depend on the selected user. We will denote by p(o | a(i)) the probability
pu(o | a(i)) under some u such that u(i) > 0.

In general we would like our anonymity definitions to range over all possible values
of u since we cannot assume anything about the probabilities of the users. Thus, Halpern
and O’Neill’s definition (4) should be written: ∀u∀i∀o : pu(a(i) | o) ≤ 1/2 which
makes even more clear the fact that it cannot hold for all u, for example if we take u(i)
to be very close to 1. On the other hand, Reiter and Rubin’s definition contains only
probabilities of the form p(o | a(i)). Crowds satisfies condition (6) so these probabilities
are independent from u.

In [7], where they define conditional anonymity, Halpern and O’Neill make the fol-
lowing remark about strong anonymity. Since the probabilities of the users are generally
unknown we cannot expect that all users appear with the same probability. All that we
can ensure is that the system does not reveal any information, that is that the probabil-
ity of every user before and after making an observation should be the same. In other
words, the fraction between the probabilities of any couple of users should not be one,
but should at least remain the same before and after the observation.

We apply the same idea to probable innocence. We start by rewriting relation (4) as

∀i ∈ A, ∀o ∈ O : 1 ≥ pu(a(i) | o)
pu(
∨

j �=i a(j) | o)
(7)

Probable Innocence Revisited 153

As we already explained, if u(i) is very high then we cannot expect this fraction to be
less than 1. Instead, we could require that it does not surpass the corresponding fraction
of the probabilities before the execution of the protocol. So we generalize condition (7)
in the following definition.

Definition 4. A system (M, I, a,B, pu) has probable innocence if for all user distribu-
tions u, users i ∈ I and observables o ∈ O, the following holds:

(n− 1)
pu(a(i))

pu(
∨

j �=i a(j))
≥ pu(a(i) | o)
pu(
∨

j �=i a(j) | o)

where n = |I| is the number of anonymous users.

In probable innocence we consider the probability of a user compared to the probability
of all the other users together. Definition 4 requires that the fraction of these probabil-
ities after the execution of the protocol should be no bigger than n − 1 times the same
fraction before the execution. The n − 1 factor comes from the fact that in probable
innocence some information about the sender’s identity is leaked. For example, if users
are uniformly distributed, each of them has probability 1/n before the protocol and the
sender could appear with probability 1/2 afterwards. In this case, the fraction between
the sender and all other users is 1

n−1 before the protocol and becomes 1 after. Definition
4 states that this fraction can be increased, thus leaking some information, but no more
than n− 1 times.

Definition 4 generalizes relation (4) and can be applied in cases where the distri-
bution of users is not uniform. However it still involves the probabilities of the users,
which are not a part of the system. What we would like is a definition similar to Def. 3
which involves only probabilities of events that are part of the system. To achieve this
we rewrite Definition 4 using the following transformations. For all users we assume
that u(i) > 0. Users with zero probability could be removed from Definition 4 before
proceeding.

(n− 1)
pu(a(i))∑

j �=i pu(a(j))
≥ pu(a(i) | o)∑

j �=i pu(a(j) | o) ⇔

(n− 1)
pu(a(i))∑

j �=i pu(a(j))
≥

pu(o | a(i))pu(a(i))
pu(o)∑

j �=i
pu(o | a(j))pu(a(j))

pu(o)

⇔

(n− 1)
∑
j �=i

pu(o | a(j))pu(a(j)) ≥ pu(o | a(i))
∑
j �=i

pu(a(j))

We obtain a lower bound of the left clause by replacing all pu(o | a(j)) with their mini-
mum. So we require that

(n− 1)min
j �=i
{pu(o | a(j))}

∑
j �=i

pu(a(j)) ≥ pu(o | a(i))
∑
j �=i

pu(a(j)) ⇔ (8)

(n− 1)min
j �=i

pu(o | a(j)) ≥ pu(o | a(i)) (9)

Condition (9) can be interpreted as follows: for each observable, the probability that
user i produces it should be balanced by the corresponding probabilities of the other

154 K. Chatzikokolakis and C. Palamidessi

users. It would be more natural to have the sum of all pu(o | a(j)) at the left side, in
fact the left side of (9) is a lower bound of this sum. However, since the probabilities
of the users are unknown, we have to consider the “worst” case where the user with the
minimum pu(o | a(j)) has the greatest probability of appearing.

Finally, condition (9) is equivalent to the following definition that we propose as a
general definition of probable innocence.

Definition 5. A system (M, I, a,B, pu) has probable innocence if for all observables
o ∈ O and for all users i, j ∈ I:3

(n− 1)p(o | a(j)) ≥ p(o | a(i))

The meaning of this definition is that in order for pu(a(i))/pu(
∨

j �=i a(j)) to increase
at most by n − 1 times (Def. 4), the corresponding fraction between the probabilities
of the observables must be at most n − 1. Note that in probabilistic anonymity (Def.
3) p(o | a(i)) and p(o | a(j)) are required to be equal. In probable innocence we allow
p(o | a(i)) to be bigger, thus losing some anonymity, but no more than n− 1 times.

Definition 5 has the advantage of including only the probabilities of the observables
and not those of the users, similarly to the Definition 3 of probabilistic anonymity. It is
clear that Definition 5 implies Definition 4 since we strengthened the first to obtain the
second. Since Definition 4 considers all possible distributions of the users, the inverse
implication also holds. The proof of all propositions can be found in [10].

Proposition 2. Definitions 4 and 5 are equivalent.

Examples. Recall now the two examples of figure 2. If we apply Definition 5 to the first
one we see that it doesn’t hold since (n − 1)p(o1 | a(2)) = 0 � c

n−pf
= p(o1 | a(1)).

This agree with our intuition of probable innocence being violated when user 1 is
observed. In the second example the definition holds since ∀i, j : p(oi | a(i)) =
p(oj | a(j)). Thus, we see that in these two examples our definition reflects correctly
the notion of probable innocence.

4.1 Relation to Other Definitions

Definition by Reiter and Rubin. Reiter and Rubin’s definition can be expressed by
the condition (3). It considers the probabilities of the observables (not the users) and it
requires that for each user, a special observable, meaning that the user is observed by
a corrupted member, has probability less than p(h)/2. As we saw at the examples of
figure 2 what is important is not the actual probability of an observable under a specific
user, but its relation with the corresponding probabilities under the other users.

However in Crowds there are some important symmetries. First of all the number
of the observables is the same as the number of users. For each user i there is an ob-
servable oi meaning that the user i is observed. When i is the initiator, oi has clearly a
higher probability than the other observables. However, since forwarders are randomly

3 Remember that pu(o | a(i)) is independent from u so we can take any distribution such that
u(i) > 0, for example a uniform one.

Probable Innocence Revisited 155

selected, the probability of oj is the same for all j = i. The same holds for the observ-
ables. oi is more likely to have been performed by i. However all other users j = i have
the same probability of producing it. These symmetries can be expressed as:

∀i ∈ I, ∀k, l = i : p(ok | a(i)) = p(ol | a(i)) (10)

p(oi | a(k)) = p(oi | a(l)) (11)

Because of these symmetries, we cannot have a situation similar to the ones of Figure 2.
On the left-hand side, for example, the probability p(o1 | a(2)) = 0 should be the same
as p(o3 | a(2)). To keep the value 0 (which is the reason why probable innocence is
not satisfied) we should have 0 everywhere in the row (except p(o2 | a(2))) which is
impossible since the sum of the row should be p(h) and p(o2 | a(2)) ≤ p(h)/2.

So the reason why probable innocence is satisfied in Crowds is not the fact that
observing the initiator has low probability (what definition (2) ensures) by itself, but
the fact that definition (2), because of the symmetry, forces the probability of observing
any of the other users to be high enough.

Proposition 3. Under the symmetry requirements (10) and (11), Definition 5 is equiv-
alent to the one of Reiter and Rubin.

Note that the number of anonymous users n is not the same as the number of users m
in Crowds, in fact n = m− c where c is the number of corrupted users.

Definition of Halpern and O’Neill. One of the motivations behind the new definition
of probable innocence is that it should make no assumptions about the probabilities of
the users. If we assume a uniform distribution of users then it can be shown that our
definition becomes the same as the one of Halpern and O’Neill.

Proposition 4. The definition of Halpern and O’Neill can be obtained by Definition 4
if we consider a uniform distribution of users, that is a distribution u such that ∀i, j ∈
I : u(i) = u(j) = 1/n.

Note that the equivalence of Def. 4 and Def. 5 is based on the fact that the former ranges
over all possible distributions u (details about the proof can be found in [10]). Thus Def.
5 is strictly stronger than the one of Halpern and O’Neill.

Probabilistic anonymity. It is easy to see that strong anonymity (equation (1)) implies
Halpern and O’Neill’s definition of probable innocence. Definition 5 preserves the same
implication in the case of probabilistic anonymity.

Proposition 5. Probabilistic anonymity implies probable innocence (Definition 5).

The relation between the various definitions of anonymity is summarized in Figure 3.
The classification in columns is based on the type of probabilities that are considered.
The first column considers the probability of different users, the second the probability
of the same user before and after an observation and the third the probability of the ob-
servables. Concerning the lines, the first corresponds to the strong case and the second
to probable innocence. It is clear from the table that the new definition is to probable
innocence as conditional anonymity is to strong anonymity.

156 K. Chatzikokolakis and C. Palamidessi

Strong anonymity (HO) Conditional anon. (HO) Probabilistic anon. (Def. 3)
p(a(i) | o) = p(a(j) | o) uniform⇐⇒ p(a(i) | o) = p(a(i) | a) ⇐⇒ p(o | a(i)) = p(o | a(j))

⇓ ⇓
Probable Inn. (HO) Probable Inn. (Def. 4) Probable Inn. (Def. 5)
1/2 ≥ p(a(i) | o) uniform⇐⇒ (n−1)p(a(i))

p(
∨

a(j)) ≥ p(a(i) | o)
p(
∨

a(j) | o) ⇐⇒ (n− 1)p(o | a(j)) ≥ p(o | a(i))

� if symmetric

Probable Inn. (RR)
p(h)/2 ≥ p(oi | a(i))

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Probabilities of users Probabilities before and

after the observation
Probabilities of observables

Fig. 3. Relation between the various anonymity definitions

5 Conclusion

In this paper we consider probable innocence, a weak notion of anonymity provided by
real-world systems such as Crowds. We analyze the definitions of probable innocence
existing in literature, in particular: the one by Reiter and Rubin which is suitable for
systems which, like Crowds, satisfy certain symmetries, and the one given by Halpern
and O’Neill, which expresses a condition on the probability of the users.

Our contribution is a definition of probable innocence which is (intuitively) adequate
for a general class of protocols, abstracts from the probabilities of the users and involves
only the probabilities that depend solely on the system. The new definition is shown to
be equivalent to the existing ones under symmetry conditions (Reiter and Rubin) or
uniform distribution of the users (Halpern and O’Neill).

References

1. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for Web transactions. ACM Transactions on
Information and System Security 1 (1998) 66–92

2. Syverson, P., Goldschlag, D., Reed, M.: Anonymous connections and onion routing. In:
IEEE Symposium on Security and Privacy, Oakland, California (1997) 44–54

3. Dingledine, R., Freedman, M.J., Molnar, D.: The free haven project: Distributed anonymous
storage service. In: Designing Privacy Enhancing Technologies, International Workshop on
Design Issues in Anonymity and Unobservability. Volume 2009 of LNCS., Springer (2000)
67–95

4. Berthold, O., Federrath, H., Köpsell, S.: Web mixes: A system for anonymous and unobserv-
able internet access. In: Designing Privacy Enhancing Technologies, International Work-
shop on Design Issues in Anonymity and Unobservability. Volume 2009 of LNCS., Springer
(2000) 115–129

5. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anonymous infor-
mation storage and retrieval system. In: Designing Privacy Enhancing Technologies, Inter-
national Workshop on Design Issues in Anonymity and Unobservability. Volume 2009 of
LNCS., Springer (2000) 44–66

Probable Innocence Revisited 157

6. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untrace-
ability. Journal of Cryptology 1 (1988) 65–75

7. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent systems. In:
Proc. of the 16th IEEE Computer Security Foundations Workshop. (2003) 75–88

8. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent systems.
Journal of Computer Security (2005) To appear.

9. Bhargava, M., Palamidessi, C.: Probabilistic anonymity. In: Proceedings of CONCUR 2005.
LNCS, Springer-Verlag (2005) To appear. Report version available at http://www.lix.
polytechnique.fr/˜catuscia/papers/Anonymity/report.ps.

10. Chatzikokolakis, K., Palamidessi, C.: Probable innocence revisited. Technical report,
INRIA Futurs and LIX (2005) Available at http://www.lix.polytechnique.
fr/˜catuscia/papers/Anonymity/reportPI.pdf.

11. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic Journal
of Computing 2 (1995) 250–273 An extended abstract appeared in Proceedings of CONCUR
’94, LNCS 836: 481-496.

12. Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Proc. of the European Symposium
on Research in Computer Security (ESORICS). Volume 1146 of LNCS., Springer-Verlag
(1996) 198–218

13. Ryan, P.Y., Schneider, S.: Modelling and Analysis of Security Protocols. Addison-Wesley
(2001)

14. Shmatikov, V.: Probabilistic analysis of anonymity. In: IEEE Computer Security Foundations
Workshop (CSFW). (2002) 119–128

15. Wright, M., Adler, M., Levine, B., Shields, C.: An analysis of the degradation of anonymous
protocols. In: ISOC Network and Distributed System Security Symposium (NDSS). (2002)

Relative Trustworthiness

Johan W. Klüwer1 and Arild Waaler2

1 Dep. of Philosophy, University of Oslo
johanw@filosofi.uio.no

2 Finnmark College and Dep. of Informatics,
University of Oslo
arild@ifi.uio.no

Abstract. We present a method for trust scenarios with more than one trustee,
where sets of trustees are ordered in a relation of relative trustworthiness. We
show how a priority structure implicit in a trust relation can be made fully ex-
plicit by means of a lattice and how a system of default expectations arises
from a systematic interpretation. The default structure lends itself to formal in-
terpretation, but is independent of a particular logical language. The theory is
designed to directly extend the analysis of the concept of trust given by Andrew
Jones.

1 Introduction

In this paper, we present a method for representing and reasoning about attitudes of
trust with regard to a base set of trustees. We have two primary aims. First, we want
to clarify issues of relative trust: of a subject that trusts a variety of entities, but with
different degrees of confidence. Second, we make a distinction between trust by default
and unconditional, full trust, and provide a structured way from the former to the latter.
An outcome of the analysis is that the trusting subject’s expectations about relative
trustworthiness may need to be corrected once the consequences of default attitudes
have been worked out.

We do not attempt to give an account of what constitutes trust in itself. Instead, we
have designed the relative-trust framework to be directly applicable, as a compatible ex-
tension, to the conceptual analysis of trust given by Andrew Jones [2]. Jones provides
a minimal characterization, designed to be valid for every kind of trust, from trust in
mere regularities to trust in the operations of complex normative structures. Quite ap-
propriately for the fundamental analysis, he does not discuss the complexities involved
in trusting more than one entity. In scenarios involving multiple trustees, distinctions
between different degrees of trust are however quite essential. Conflicts or violations
of trust may have systematic impact, and a proper and efficient way of handling the
relational structures involved is important for the conception of trust to have practi-
cal application. This paper provides a method for applying Jones’ analysis to scenar-
ios in which an arbitrary number of entities are trusted. We provide various examples,
intended to demonstrate applicability in real cases.

T. Dimitrakos et al. (Eds.): FAST 2005, LNCS 3866, pp. 158–170, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Relative Trustworthiness 159

2 The Notion of Trust

2.1 Trust as Rule- and Conformity-Belief

Our point of departure is to adopt the analysis of trust given by Jones [2]. Accord-
ing to that analysis, a trusting attitude essentially consists in having a pair of beliefs:
a rule-belief and a conformity-belief.1 Jones’ exposition employs five different scenar-
ios, which involve different types of trust but nevertheless are seen to satisfy the same
pattern; we quote three of them [2, p. 226]:

S1 (the regularity scenario). x believes that there exists a regularity in y’s behavior,
so that under particular kinds of circumstances y exhibits a particular kind of behavior
. . . In addition, x believes that this regularity will also be instantiated on some future
occasion(s); that is to say, x believes that the future occasion(s) will not prove to be an
exception.

S2 (the obligation scenario). x believes that there is a rule requiring y to do Z, and that
y’s behavior will in fact comply with this rule.

S4 (the informing scenario). x believes that y is transmitting some information to him,
and that the content of y’s message, or signal, is reliable.

A trusting subject believes a pair of propositions about a trusted entity: that a rule or
regularity applies to the trustee (rule-belief), and that the rule or regularity is in fact
followed or instantiated (conformity-belief). For brevity, we will use the letter R to
denote the trust rule constitutive of a given scenario, and the expression R(a) to express
the statement that the rule applies to an entity a. We will use the letter C to denote the
according predicate for conformity, with C(a) meaning that a does in fact conform. I.e.,

x is trusted iff R(x) and C(x) are both believed.

As examples matching the scenarios quoted above, consider the following pairs (note
that these are not intended to strictly match the presentation in [2]).

S1 R(a): a usually goes to the movies on Sunday; C(a): a will go the movies this
Sunday.

S2 R(a): a ought to repay the €10 he borrowed; C(a): a will pay the €10.

S4 R(a): a ought to deliver only true information; C(a): the information a delivers is
true.

We want to extend this analysis of trust with a structured approach to trust in sets of
trustees, one that can handle trust that several people will be going to the movies, that
several sources deliver true information, and so forth.

2.2 Relative Trustworthiness

When we are presented with a situation in which more than one agent is trusted ac-
cording to the same criterion, we can always ask questions of degrees of trust. We often

1 We will assume throughout that having such a pair of beliefs is not only necessary but also
sufficient for trust, which is natural for present purposes. Note that Jones doesn’t commit to
this strong thesis.

160 J.W. Klüwer and A. Waaler

need to consider trusting attitudes directed toward not single agents, but sets of agents
– such as, one may believe that some members of a set of agents will conform without
believing that every member of the set will. Is it more likely that a will conform than
that b will conform, or that only one of the two (a and b) will conform than that both
will? In general, when a rule R applies to every member in a set of agents X, we may
need to consider a range of trust attitudes, perhaps a distinct one for each subset of X.

In the following, talk about “what is believed” is assumed to apply to an implicit
doxastic subject that has beliefs at different degrees of confidence, abbreviated doc. We
will use the notion of degree of confidence informally here; cf. [5, section 3.5] for a
formal approach and discussion.

It is natural to say that a rule R establishes a dimension of trust according to which
agents, or sets of agents, can be trusted to greater or lesser degrees. Prioritized beliefs
about conformity with the rule establishes a relation between the trusted entities: The
degrees of confidence with which conformity-beliefs are held imply a structure of rela-
tive trustworthiness.

We consider the following to be guiding principles for what follows.

Given a set of trustees, that some member(s) will conform to the rule is at least
as plausible as that every member will conform.

(1)

If some entity x is trusted, and y is at least as trustworthy as x, then rationality
demands that y should be trusted too.

(2)

Accept that a trustee (set of trustees) will in fact conform, unless this is incon-
sistent with what you have already accepted.

(3)

We will introduce a formal apparatus for representing the set of trustees, and the trust-
worthiness relation between subsets of the set of trustees. The definition of the
trustworthiness relation will be quite similar to the one introduced by John Cantwell [1].

There is a wide range of scenarios to which the relative-trust approach is relevant, as
we will try to illustrate this with examples following the formal exposition. Examples
in section 3.3 demonstrate simple applications to trust in information sources. In sec-
tion 4, we describe the case of a legal jury, in which the majority vote is decisive, an
authentication scenario in which input from three different entities is considered, and a
debtors scenario.

2.3 The Basic Pre-order on Trustees

Given a trust scenario as defined by a general rule R and conformity criterion C, let S
be a (possibly empty) finite set of trustees. The members ofS are precisely those single
trustees that the implicit subject believes the rule R to apply to.2

Notation: Small Latin letters a, b, c denote trustees, small variable letters x, y, z range
over trustee units, capital Latin letters A, B,C denote particular sets of trustee units,
and capital variable letters X, Y, Z range over arbitrary sets of trustee units. We will

2 We assume that the rule-beliefs of the subject are believed with full conviction (at a maximal
doc), although nothing will turn on this. In particular, we make no attempt at providing a
formalism for the rules R.

Relative Trustworthiness 161

sometimes have to collect sets of trustee units, for which we shall use capital Greek
letters Γ, Δ.

The trustworthiness relation � is a relation between subsets ofS; we will often refer
to these subsets as trustee units. A trustee unit x is an entity that is capable of being the
subject of a conformity-belief that C(x), as follows: A singleton unit {a} represents a
single trustee, and C({a}) is the proposition that a will conform. With a non-singleton
unit x, conformity C(x) is taken to mean that some member of x will conform to the rule.

We assume that the trustworthiness relation is reflexive and transitive (a pre-order).
Two trustee units x and y may be trustworthiness-equivalent, written x ∼ y.

x ∼ y =def x � y and y � x (4)

We write x � y to express that y is strictly more trustworthy than x.

x � y =def x � y and not x ∼ y (5)

Trustee units that are unrelated by � will be called independent, denoted x � y. If no two
trustee units are independent, we say � is connected.

We interpret the trustworthiness relation in terms of belief, at different degrees of
confidence, that trustee units will conform. If x � y, the subject has a stronger belief
that y will conform than that x will. x ∼ y means that belief in conformity for x is just
as strong as that for y.3 Independence x � y obtains when the strength of belief that x
will conform is not comparable to that which which y is believed to conform (neither
stronger than, weaker than, or the same). If we allow for the trusting subject to reflect
on its own degrees of conviction, we may say that independence is a consequence of
lack of belief, where neither of x � y, x � y, and x ∼ y is believed to obtain.

Principle (1) implies that enlargement of a trustee unit with new members may never
yield a unit that is less likely to conform. Hence, a unit will be at least as trustworthy
as every unit that it contains as a subset. This motivates taking the following principle,
which we will occasionally refer to as monotonicity, to be valid.

x � x ∪ y . (6)

It follows that for each source unit x, the following hold.

x �S , (7)

∅ � x . (8)

To see why (7) is valid, note that conformity by S is secured as long as just one trustee
conforms. At the other extreme, we stipulate that the empty set is a limit case that never
conforms, motivating (8).

The framework we present is general, because it is is not sensitive to the type of
members of S, but therefore also weak on assumptions. Consider some likely applica-
tions and according kinds of trustees: Sources of information are a prominent type, and
could include sensors taking measurements, newspapers, or witnesses; for these, trust

3 To be precise, let the expression “ϕ is believed more strongly than ψ” mean (i) that ϕ is believed
at some doc, and (ii) that every doc at which ψ is believed is inferior to a doc at which ϕ is
believed. For equally strong belief, (ii) is, ψ is believed at every doc at which ϕ is believed.

162 J.W. Klüwer and A. Waaler

will typically be of the S1 “regularity” or S4 “information” kinds. Agents, artificial and
human, are another major class, and typically subject to rules in the sense of obligations
S2. For instance, in a “debtors” scenario,S may consist of individuals that owe money,
and the subject believes each of them to be under obligation to make appropriate repay-
ments. Surely, in many concrete cases it will be reasonable to adopt domain-specific
constraints that strengthen the trustworthiness relation.

2.4 The Poset of Trust-Equivalent Trustee Units

To have an attitude of trust, given some S, is to trust a (possibly empty) set of trustee
units. In terms of belief in conformity, having an attitude of trust toward a set of trustee
units A amounts to believing that at least one member of each trustee unit in A will
conform. For example, a trust attitude that is directed toward the trustee units x, y, and
z involves conformity beliefs C(x),C(y),C(z) – for each unit x, y, and z, some member
of the unit is expected to conform to the relevant trust rule.

In the following, we will allow ourselves to talk about attitudes as being nothing
more than sets of trustee units, and to say that a trustee unit is “included” in an attitude
of trust, meaning that it is among those trusted. The empty set represents the minimal
attitude of placing trust in none of the trustee units; it will be denoted by the symbol �.

Given a trust relation �, we can distinguish those trust attitudes that respect the rela-
tion. The relevant principle is expressed in rule (2), that x may only be trusted if every
y � x is trusted as well. In this section and the next, we identify the permissible trust
attitudes according to this principle.

We use the following standard terminology. In a poset (S ,≤) the ≤-relation is reflex-
ive, transitive and anti-symmetric. The poset has a unique cover relation �, defined as
x � y iff x < y and x ≤ z < y implies z = x. C ⊆ S is an antichain if every two distinct
elements in C are incomparable by ≤. Note in particular that ∅ is an antichain. Every
subset of S has ≤-minimal elements, and the set of these elements is an antichain. ↑C
denotes an up-set, defined as {x | (∃y ∈ C)(y ≤ x)}. The set of antichains in a poset is
isomorphic to the set of up-sets under set inclusion.

If an attitude of trust includes a trustee unit x, but not an equivalently trustworthy
trustee unit y, then the attitude is not permissible.4 This motivates a focus on the equiv-
alence classes of S modulo ∼. Where x ⊆ S,

[x] =def {y : x ∼ y} (9)

Let Ṡ be the set of all equivalence classes of S modulo ∼. We will say a set of trustees
x is vacuous with regard to trustworthiness if x ∈ [∅] (cf. (8)). In the extreme case that
every trustee unit is a member of [∅], the only permissible attitudes are � and [∅], and
the trustworthiness relation itself is said to be vacuous.

Where X and Y are in Ṡ, define a relation �̇ of relative strength between them as
follows.

X �̇ Y =def (∃x ∈ X)(∃y ∈ Y)(x � y) (10)

Let X �̇ Y designate X �̇ Y or X = Y. X �̇Y designates independence.

4 Note that this is implied by the interpretation of trustworthiness-equivalence in terms of
equally strong beliefs in conformity.

Relative Trustworthiness 163

Lemma 1. (Ṡ, �̇) is a poset in which [∅] is the unique minimum and [S] the unique
maximum. (Ṡ, �̇) is a linear order iff (℘S,�) is connected.

Proof. Monotonicity entails the unique minimum and maximum. The other properties
follow easily from the construction of (Ṡ, �̇).

2.5 A Lattice of Trust Levels

We know from Lemma 1 that (Ṡ, �̇) is a poset, one that orders sets of equivalent trustee
units according to strength. Given this poset, it straightforward to identify the permissi-
ble trust attitudes: a trust attitude is permissible if it is an up-set in (Ṡ, �̇). Technically,
we will represent an attitude by its set of minima, or equivalently, by an antichain in the
partial order (Ṡ, �̇). We define the set T of permissible trust attitudes as follows,

T = {∪Γ | Γ is an antichain in (Ṡ, �̇)} .
There is a natural relation of strength between permissible trust attitudes. Having a
weak trust attitude means trusting only that few trustee units will conform, or perhaps
none; a strong attitude means trusting many trustee units, or perhaps all, will conform
to the relevant trust rule. Let Γ and Δ be antichains in (Ṡ, �̇). We define the relation ≤
between permissible attitudes by

∪Γ ≤ ∪Δ iff ↑Δ ⊆ ↑Γ.
The attitude � of trusting no trustee unit, ∪∅, is ≤-maximal in T. This is natural, as the
corresponding attitude of trusting no trustee unit will always have a maximal degree of
reliability. Ordered by ≤, the members of T form a lattice in which lesser nodes repre-
sent stronger trust attitudes. It is natural to talk about the permissible trust attitudes as
corresponding to a hierarchy of degrees of trust. We shall hence occasionally refer to T
as the set of trust levels.5

In the lattice (T,≤), A < B intuitively means that B is a level of trustworthiness that
is genuinely greater than A. Let � denote meet and � denote join. Then A� B is the
weakest trust level that is at least as strong as both A and B; if A and B are comparable
by ≤, it is equal to the stronger of the two, but if not, it is stronger than both and refers
to the level that combines the two. A� B is the strongest trust level that is at least as
weak as both A and B. (In terms of attitudes, A� B refers to the attitude of believing all
units in A and all units in B to conform, and A � B to the attitude that some unit in A or
in B will conform.)

The lattice of trust levels makes explicit what the permissible trust attitudes are and
how they are related with regard to strength. This makes it suitable as a frame of ref-
erence for choosing, in a given scenario, a threshold of trust: a level that is deemed
sufficiently trustworthy. The lattice lays out the rational options – it presents us with the
set of trusting attitudes that are permissible, given the initial trustworthiness relation,

5 The strength of levels of trustworthiness varies inversely with strength of the requisite atti-
tudes. For instance, consider the attitude � of not trusting any trustee unit. This represents a
maximally weak attitude that does not require any belief in conformity. � is however maximal
as a level of trustworthiness, as the empty set of trustee units can never fail to conform.

164 J.W. Klüwer and A. Waaler

and properly relates them according to reliability. Setting a threshold may also be de-
scribed in terms of risk. If A < B, then to choose A as the threshold of trust is to take a
greater risk with regard to trusting than if B is chosen. A level of trustworthiness can be
used to specify a “limit” of risk, to draw a line between what is trusted, and not trusted,
in the non-relative sense of the word. For example, with a threshold at A� B, if A and
B are comparable, risk is limited to the more trustworthy of the two; if incomparable,
then to the closest level that represents comparably less risk than both A and B. To say
that A� B lies within the risk limit means that A and B are both considered reliable (i.e.,
that all trustee units in both A and B are trustworthy).

Using the lattice notation, a threshold of trust can be conveniently specified by direct
reference to trustee units. Observe that each member of Ṡ is a member of T. Therefore,
any expression using members of Ṡ (i.e., equivalence classes of source units), � and �
denotes a unique level of trust.

3 Default, Expected Trust vs. Actual Trust

3.1 A Tree of fallbacks for Broken Trust

The core of a default conception of relative trust is the default rule (3) to assume trustees
to conform, unless this is in conflict with what you already know. We presently interpret
this rule with respect to relative trust. Let us consider a trusting subject that has only
permissible trust attitudes. In the non-relative sense of “trust”, � is always trustworthy,
and an attitude X is adopted, on condition that every Y ≥ X is also adopted, by default.

Now, if adopting an attitude X should be inconsistent with adopting a weaker attitude
Y, then X is not an acceptable trust level, and we say that trust at X is broken. Trust at
X is broken if conformity by the trustee units at X has implications that are inconsistent
with the consequences of conformity accepted at a superior level. If we allow for the
trusting subject to have antecedent beliefs, such beliefs may also be inconsistent with
trusting at level X.

When blocking occurs, the significance of trusting at X should be identified with the
adoption of some weaker, acceptable trust attitude. We will call this the fallback of X.
The fallback, as the value of a blocked default, is the key notion that allows us to view
relative trust as a default attitude.

Let X be an element of T different from �, and let Γ be the ≤-cover of X. Given
that Γ is singleton, we straightforwardly identify

⋃
Γ as the appropriate fallback of X.

Where not, note that by construction of the lattice, X is a level composed of a set of
simpler levels, the members of Γ. That trust is broken at X means some of these levels
are not trustable. In this case, the fallback of X should be identified as a level with
greater trustworthiness than every Y immediately superior to X. Let the fallback f(X) of
X be defined as

f(X) = lub(Γ) in (T,≤) .

The fallback function is undefined for �; otherwise every node has a unique fallback. �,
representing the trust level of antecedent knowledge (if any), is always the fallback of
[S]. Note that every path from the lattice maximum � to a trust level X must go through
f(X), and that f(X) is the ≤-minimal node with this property.

Relative Trustworthiness 165

The fallback tree (T,≺) is defined as the weakest relation such that for all X ∈ T,
f(X) ≺ X. It is easy to show that the fallback tree is indeed a tree with root �.

3.2 Formal Representation of Trust Scenarios

The fallback tree of a given trust scenario has been described informally in terms of
default inference. For the representation of a fallback tree in the language of a default
logic, we require a target language with sufficient expressive power. For certain simple
kinds of scenarios, a translation has been provided in [4], namely, for the case of trusted
sources of information whose conformity propositions can be expressed as formulae
of propositional logic, or in a restricted multi-modal doxastic language. In these cases,
various default logics can be chosen for expression of the default structure.

There are however prominent cases of trust that would require a more complex for-
malism. One case in point is where conformity consists in action, as might be expressed
in a modal language with “praxeological” operators. (For instance, conformity for the
rule “a ought to see to it that p is true” could be expressed, using a notation of currency,
as Ea p.) In such scenarios, agents are typically trusted to bring about or secure that
states of affairs obtain. For a formal representation of such scenarios, we would need a
language capable of expressing both default attitudes and action statements.

In the following, we will assume that a knowledge base of statements is believed at
the trust level �. We represent the knowledge base by the symbol κ. Different applica-
tions of the theory might require different implementations with regard to the content of
κ. In particular, if it is desired that rule-beliefs are made formally explicit, it may be nat-
ural to let κ contain formulae of a greater complexity than those expressing conformity-
beliefs (for illustration, cf. [3, section 3.4.3], where rule- and conformity-beliefs for a
different types of scenarios are expressed in a formal, multi-modal language).

3.3 After the Default Evaluation: A New Trust Relation

If desired, we can interpret a trustworthiness relation as representing the subject’s de-
fault expectation about which trustees will conform to the general trust rule R. We then
say that belief in conformity is by default only, as opposed to full belief.

After evaluation of a set of defaults, in sequences as given by the fallback tree, we do
however have a situation in which conformity-propositions are believed not by default,
but unconditionally (although typically still at a variety of degrees of confidence). The
outcome of evaluation of the default structure is a (prioritized) belief state in which
unconditional conformity-beliefs are held at every non-blocked level where trust is not
broken. For each trustee unit x s.t. C(x) is believed (at whatever degree of confidence),
there is trust; where not, the lack of conformity-belief implies that x is not trusted. A
new trustworthiness relation arises from this resulting belief state, as can be determined
from the fallback tree in the following way.

1. Where x is not trusted at any level, say x is vacuous: x ∼ ∅.
2. Where x and y are trusted, interpret the trust levels as levels of confidence to deter-

mine relative trustworthiness.
3. Apply monotonicity to get a proper trustworthiness relation.

166 J.W. Klüwer and A. Waaler

Such a “consequent”, post-evaluation relation may be seen as expressing explicitly the
subject’s trust attitudes, as a result of a reasoned working out of the consequences of
initial expectations of trustworthiness. It is natural to see this in a dynamic perspective:
the initial, “antecedent” trust relation expresses the subject’s expectation of trustwor-
thiness. Evaluation of the default structure amounts to working out the consequences
of this expected order, and the result is a possible modification of the trustworthiness
relation. Some trustee units may be demoted as vacuous, while others may be promoted
to greater trustworthiness.

We intend to address the dynamics of evolving trust relations in future work. For
now, we simply give some examples to illustrate how a new trustworthiness relation
can be determined from the outcome of the evaluation of defaults. In these examples,
a and b are assumed to be information sources delivering propositional formulae. We
display the fallback trees, decorated with post-evaluation formulae at each node. (The
nodes � and ∅ have been omitted from the graphs to save space.) Where a level has
obtained its value ϕ from a fallback, we indicate this as “⊥/ϕ”.

In referring to particular trustee units in examples we will consistently simplify no-
tation by omitting brackets: a � bc is, e.g., shorthand for {a} � {b, c}. Likewise, the set
{{a}, {a, b}} will be denoted a, ab. Observe that the symbol a should, depending on the
context, either be taken as a reference to the trustee a or to the singleton trustee set {a}
or to the singleton trustee set collection {{a}}.
Example 1 (No relation change). Let κ be empty, and assign information as κ : �,
a : p ∧ q, b : q ∧ r. We assume a linear relation where ab � a � b � ∅. The decorated
fallback tree shows that no trust is broken – all trust expectations are met. In this case,
there is no reason to revise the trust relation post-evaluation; the consequent relation is
the same as the expected relation.

ab : q ∧ (p ∨ r)

a : p ∧ q

b : p ∧ q ∧ r

Example 2 (Modification of trust relation). Here is a case in which the composite ab is
trusted (intuitively, what a and b agree on is acceptable), while a and b both turn out to
be untrustable. This will typically arise in cases where a and b are equivalently trust-
worthy, but provide incompatible information, so let ab� a∼ b� ∅. Assign information
as κ : �, a : p ∧ q, b : p ∧ ¬q. Note that C(ab) is p, C(a) is p ∧ q, C(b) is p ∧ ¬q.

ab : p

a, b : ⊥/p
Here, the belief p at level ab means ab is trusted. Neither a nor b is trusted, because
the requisite conformity-beliefs are missing: this means both a and b should be con-
sidered vacuous post-evaluation. The antecedent and consequent trust relations are the
following.

Relative Trustworthiness 167

antecedent ab

a, b

∅

consequent ab

a, b, ∅

Example 3 (Independent levels, no change). Another example in which no revision of
the trustworthiness relation is called for. Let a and b be independent, non-vacuous, and
less trustworthy than ab. Assign information as κ : �, a : p ∧ q, b : p ∧ ¬q.

ab : p

a : p ∧ q���������

b : p ∧ ¬q
���������

a, b : ⊥/p

4 Examples

Example 4 (Jury). We consider a simplified characterization of trust attitudes toward
a legal jury. Each juror is required to deliver a statement that a defendant is guilty (p)
or not guilty (¬p). The jurors are subject to various norms about exercising their best
judgment, honesty, and so forth. Our aim is only to characterize the notion of “the”
statement made by the jury, as typically given by a majority vote (in the case of a tie, no
statement is made). Trust in the jury’s judgment is therefore trust that what the majority
agrees on is correct.

The jurors are most naturally considered to be equally trustworthy: The judgment of
one is as good as that of any other, and furthermore, every set of n jurors is equivalently
trustworthy to any other set with the same number of members. Majority rule means
each set of jurors that has less than half of the jury’s members is considered vacuous.
(Where, e.g., agreement of five out of seven members is required for a valid decision,
four-member trustee units also need to be considered vacuous.)

Posets of the trust relations for two-, three-, and four-member juries, according
to these requirements, will be as follows; let S be, respectively, {a, b}, {a, b, c}, and
{a, b, c, d}.

ab

a, b, ∅

abc

ab, ac, bc

a, b, c, ∅

abcd

abc, abc, acd, bcd

ab, ac, ad, bc, bd

a, b, c, d, ∅
Because conformity by each juror requires only a “yes” or “no” statement, we can
simplify these relations to having only two levels: Any statement agreed to by at least
the majority of trustees will be sufficient for a majority vote, and any statement by
smaller trustee units will then be overruled. The simplified relations are the following.

168 J.W. Klüwer and A. Waaler

ab

a, b, ∅

abc, ab, ac, bc

a, b, c, ∅

abcd, abc, abc, acd, bcd

ab, ac, ad, bc, bd, a, b, c, d, ∅
Example 5 (Authentication). For this example, we wish to represent an authentication
or admission test, in which three trustees a, b, and c each deliver a statement p for
“admit” or ¬p for “don’t admit”. Concrete scenarios matching this may be admissions
procedures for entering an education, or a security clearance system.

For the trust relation, we assume that abc � ab � ac and abc � bc, and that bc is
incomparable to ab and ac (bc � ab and bc � ac). Because conformity consists only in
a simple “yes” or “no” reply, the singleton trustee units are all vacuous (as in example
4). The following drawings illustrate the trust relation, the lattice of trust levels, and the
fallback tree.

abc

ab
��

��

ac

a, b, c, ∅
��

��

bc
��

��

		
		
		
		
	

�

abc

ab
��

��

ac

ac, bc
��

��

a, b, c, ∅

ab, bc
�������

���
�

bc
��

��

�

abc

bc

ab, bcab
�����

ac

ac, bc

��
��

��
��

��

a, b, c, ∅
Example 6 (Debtors). Assume the trusting subject has lent money to three agents: €20
to agent a, €30 to b, and €10 to c. The agents are under obligation to repay their debts,
but the subject is not convinced that they will all in fact conform: his knowledge of
background circumstances inform him that at most €50 will be returned to him.

For the trust relation, assume it is rather certain that either a or b will be paying and
less so that c will. c on his own is however more trustworthy than each of a and b; fur-
thermore, a and b are equivalent with regard to trustworthiness (so must be considered
in tandem). Making no further assumptions, we obtain the following trust relation.

abc, ab

ac
��

��

c
��

��
�

a, b

∅

bc
��

��

��
��

The conformity propositions of this scenario are always logically independent, so
any contradiction leading to broken trust will be with the prior knowledge κ. If we

Relative Trustworthiness 169

let the subject’s expected return be given as a minimal possible outcome at a given
trust level, we can decorate the fallback tree with numerical values. (Note that the node
ac, bc, corresponding to conformity by either c, or both a and b, is introduced as a
“new” level of trust in the lattice construction.) Consider abc, ab as an example of how
minimal expected value at a trust level can be computed: conformity by a is sufficient
for conformity of this node, implying a yield of €20.

� : max. 50

abc, ab : 20

ac : 20
�������

bc : 30
�������

ac, bc : 30

c : 30

a, b : ⊥/30

∅ : ⊥/30

Assume the subject’s threshold of trustworthiness is the level c. The minimal ex-
pected return will then be €30: The minimum yield of conformity at abc, ab is given if
a conforms and pays €20. Add to this minimal yield at ac, bc, which means a (already
secured from abc, ab) and c conform, giving€30. The level c requires conformity by c,
which is already secured.

With a threshold of trust set to a, b, matching an expectation that a and b will both pay
their debts, the expected yield would also be €30. Prior knowledge κ is not consistent
with of all three debtors conforming, and the post-evaluation yield is then given by the
fallback level c of a, b.

5 Conclusion and Future Work

In this paper we have presented a theory about trust in cases where there is more than one
trustee, assuming that a relation, according to a dimension given by a rule or regularity,
between trustee units is given. We have shown how the priority structure implicit in a
trust relation can be made fully explicit by means of a lattice, and how a system of default
expectations arises as an interpretation of the fallback tree corresponding to the lattice.

As the examples illustrate, the theory is adaptable to a wide range of situations and is
not tied to a particular logical language. In future work we want to study more closely
the dynamics of trust revisions, i.e., rational attitudes towards trust that agents should
form in response to observations of the trustees’ actual conformity to expectations. We
also want to study representations of the default structure that arises from fallback trees
within a variety of logical languages, in particular with respect to different language
constructs for modalities.

170 J.W. Klüwer and A. Waaler

References

1. John Cantwell. Resolving conflicting information. Journal of Logic, Language, and Informa-
tion, 7:191–220, 1998.

2. Andrew J. I. Jones. On the concept of trust. Decision Support Systems, 33:225–232, 2002.
3. Andrew J. I. Jones. A logical framework. In Jeremy Pitt, editor, The Open Agent Society. John

Wiley & Sons, Chichester, UK, 2005. To be published.
4. Johan W. Klüwer and Arild Waaler. Trustworthiness by default. In Computational Logic in

Multi-Agent Systems (CLIMA) VI, 2005.
5. Arild Waaler, Johan W. Klüwer, Tore Langholm, and Espen H. Lian. Only knowing with

degrees of confidence. Journal of Applied Logic, 2005. To appear.

Secure Untrusted Binaries – Provably!

Simon Winwood1,2 and Manuel M.T. Chakravarty1

1 Dept. of Computer Science, University of the Philippines-Diliman
sbpancho@up.edu.ph

2 TU Hamburg-Harburg, Germany
diego@tu-harburg.de

Abstract. Most of the previous comparisons of formal analyses of se-
curity protocols have concentrated on the tabulation of attacks found or
missed. More recent investigations suggest that such cursory comparisons
can be misleading. The original context of a protocol as well as the oper-
ating assumptions of the analyst have to be taken into account before con-
ducting comparative evaluations of different analyses of a protocol. In this
paper, we present four analyses of the Zhou-Gollmann non-repudiation
protocol and trace the differences in the results of the four analyses to the
differences in the assumed contexts. This shows that even contemporary
analyses may unknowingly deviate from a protocol’s original context.

1 Introduction

The observations derived from the comparative evaluation of formalisations and
analyses of the Needham-Schroeder public key and shared key protocols [1] sug-
gest that different protocol models affect the resulting analysis results, to the
extent that it explains why some analyses fail to find attacks detected by other
methods [2]. Although it is now generally accepted that this explains the previ-
ously undocumented attack discovered by Lowe [3] on the Needham-Schroeder
public key protocol, the wider effects of protocol models have not been always
considered in previous comparisons of protocol results. This results in the con-
tinued misinterpretation of a protocol’s security particularly when it is implicitly
assumed that different analyses are directly comparable without recourse to the
details of their protocol models.

Contemporary protocols encompass a larger scope. Some attempt to offer
security guarantees that do not fit traditional definitions of authentication, con-
fidentiality or integrity. The scope of newer protocols is broader, their properties
often more complex and the implementation details more convoluted. This pro-
vides a richer ground for misinterpretation of requirements and conflicts in both
formalisation and implementation. Intuition suggests that if differences in for-
malisation are already observed in relatively simple protocols such as those in the
Needham-Schroeder family, then the more recent and more complex protocols
are even more susceptible to the production of different protocol models, and pos-
sibly, to different analysis results. In this paper we present the Zhou-Gollmann
Non-repudiation protocol as an example of a contemporary, non-conventional

T. Dimitrakos et al. (Eds.): FAST 2005, LNCS 3866, pp. 171–186, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

172 S. Winwood and M.M.T. Chakravarty

security protocol where differences in the results from several analyses are at-
tributed to changes in the assumed protocol context.

2 The Zhou-Gollmann Non-repudiation Protocol

The Zhou-Gollmann non-repudiation protocol [4] was analysed by its authors us-
ing the SVO logic [5], by Schneider using CSP/FDR [6] and by Bella and Paulson
using the Isabelle theorem prover [7]. These analyses did not report the more
recent attacks reported by Gürgens and Rudolph [8] using asynchronous prod-
uct automata (APA) and the simple homomorphism verification tool (SHVT).
The primary cause for the conflicting results is in the differences in assump-
tions among the four analyses with respect to the storage of evidence and the
behaviour of participants, particularly the trusted third party (TTP).

Non-repudiation is a fairly new security requirement compared to authenti-
cation and confidentiality. As such, there are fewer protocols that provide this
property; there are even fewer formal analyses of these protocols. The Zhou-
Gollmann (ZG) protocol [4] is unique in the sense that there are several existing
analyses of it; this allows us to compare how different methods formalise the new
concept of non-repudiation.

Non-repudiation is the property wherein both the message sender and re-
cipient obtain evidence of having sent or received a message, respectively. This
evidence must be independently verifiable by a third party. Evidence of receipt
is given to the message sender to prove that the recipient has received a message.
Evidence of origin is given to the message recipient to prove that the sender has
indeed sent a message.

In the ZG protocol, there is an additional requirement of fairness. It should
not be possible for either sender or recipient to be in a more advantageous
position over the other. Fairness ensures that both evidence of receipt and origin
can only be held after the protocol completes. If one party abandons a protocol
session, no acceptable evidence must be generated for that session.

The ZG protocol is shown in Figure 1. Note that, even if the commitment
C is produced via the encryption of the message M with key K, this is not
undertaken to ensure message secrecy. Rather, the commitment is first sent to
the recipient who signs it and returns it to the sender. Both the sender and
recipient’s signature on this commitment and its corresponding label L comprises
the first part of the evidence of receipt and evidence of origin respectively. To
complete both evidence, the sender and recipient must individually obtain con K
from the trusted third party via an ftp-get operation.

If A denies having sent the message M, B presents to the judge M, C, L, K,
EOO and con K. The judge will check if [4]:

– con K was signed by the TTP.
– EOO was signed by A.
– M = {C}K−1

If these checks are confirmed then the judge upholds B’s claim. A similar
procedure is followed if the dispute concerns B’s denial of receipt of M . However,

Secure Untrusted Binaries – Provably! 173

1. A → B : fEOO, B, L, C, EOO
2. B → A : fEOR, A, L, EOR
3. A → TTP : fSUB , B, L, K, sub K
4. B ↔ TTP : fCON , A, B, L, K, con K
5. A ↔ TTP : fCON , A, B, L, K, con K

where

– A ↔ B : X : A fetches message X from B via an ftp-get operation or some
analogous means. TTP is the trusted third party.

– L is a unique label
– K is the key
– C is the commitment, where C = {M}K

– fEOO, fEOR, fSUB , fCON : flags to indicate the purpose of a (signed) message
– EOO = (fEOO, B, L, C)SA : evidence of origin of commitment C
– EOR = (fEOR, A, L, C)SB : evidence of receipt of commitment C
– sub K = (fSUB, B, L, K)SA : evidence of submission of key K
– con K = (fCON , A, B, L, K)ST T P : evidence of confirmation of key K issued by

the TTP

Fig. 1. Zhou-Gollmann Non-repudiation Protocol

the checks carried out by the judge rest on several assumptions which we will
discuss within our framework.

3 Modelling Protocol Goals

The protocol is defined by two general goals:

1. Non-repudiation, both of origin and receipt, and
2. Fairness

The first general goal requires that both A and B have evidence of receipt
and origin respectively. The second goal is an additional requirement, and has
been defined by the protocol authors as:

“A non-repudiation protocol is fair if it provides the originator and the recipient
with valid irrefutable evidence after completion of the protocol, without giving
a party an advantage over the other at any stage of the protocol run.” [4]

3.1 Zhou and Gollmann’s Analysis

In [5], the authors used the SVO logic [9] to verify their protocol. The protocol
goals were formalised from the point of view of the judge who will preside over
a dispute. Thus, the two general non-repudiation goals were formalised as:

G1 The judge J believes (A said M).

174 S. Winwood and M.M.T. Chakravarty

G2 The judge J believes (B received M).

There are certain assumptions under which these goals are checked; in par-
ticular, the authors assumed that J holds the public signature verification keys
of A, B and the TTP as well as the evidence presented by A, B, or both. Other
assumptions relate to the behaviour of the TTP . This analysis did not formalise
fairness as an explicit protocol goal, which seems to be due to the limitations of
the belief logic SVO [5].

3.2 Schneider’s Analysis

In Schneider’s CSP analysis [6], the protocol goals were analysed from two dif-
ferent perspectives: the judge’s and the participants’. From the judge’s point of
view, the validity of origin and/or receipt claims is determined purely from the
evidence presented. The judge is assumed not to have observed the protocol run.
From each participant’s point of view, fairness is expected during the protocol’s
execution. Schneider asserts that participants can only expect fairness if they
follow the protocol [6].

Both non-repudiation and fairness were formalised in Schneider’s analysis.

1. Non-repudiation of Origin:
– B possesses EOO = (fEOO,B,L,C)SA

– B possesses con K = (fCON ,A,B,L,K)ST T P

It is assumed that if B has these signed messages as evidence as well as the
components L,C,M , and K, then A must have sent (fEOO,B,L,C)SA

and
(fSUB ,B,L,K)SA

.
2. Non-repudiation of Receipt:

– A possesses EOR = (fEOR,A,L,C)SB

– A possesses con K = (fCON ,A,B,L,K)ST T P

It is assumed that if A has these signed messages as evidence as well as L, C,
M and K, then B must have sent (fEOR,A,L,C)SB

and that B can obtain
(fCON ,A,B,L,K)ST T P

from the TTP .
3. Fairness for A: If B has proof of origin for M , then the proof of receipt must

be available to A. This relies on the assumption that only A knows the key
K, and that A sends this key only once to the TTP . Thus, B will only obtain
the message M only when the TTP has made the key available to both A
and B.

4. Fairness for B: If A has proof of receipt for M , then the proof of origin must
be available to B.

3.3 Bella and Paulson’s Analysis

In [7], Bella and Paulson used the Isabelle theorem prover to analyse the ZG
protocol. Their formalisation of the protocol’s goals follows the same line as that
pursued by Schneider, i.e., both validity of evidence and fairness were modelled.

Secure Untrusted Binaries – Provably! 175

In their analysis, the validity of evidence and fairness was specified in terms of
the guarantees that each party may expect from the protocol.

1. Guarantees for A: (To justify A’s claim that B did receive the message M .)
– Validity of Evidence.

• con K shows that A bound the key K to the label L. This means
that, since con K is available, the TTP has received sub K from A.
In sub K, A has bound K to L.

• The other evidence in A’s possession is EOR. This proves that B
has received A’s EOO, where A binds C to L.

– Fairness. If B holds con K, then either A has it, or it is made available
to A. This fairness guarantee for A also states that con K will not be
available if A has not submitted sub K; and A will not submit sub K
until A has received EOR from B.

2. Guarantees for B: (To justify B’s claim that A did send the message M .)
– Validity of Evidence.

• As with A, if B holds con K, then B could only have obtained this
via the ftp-get operation from the TTP . The TTP would have made
this available only if A has submitted sub K to the TTP .

• B also presents as evidence EOO, which shows that A has bound
the commitment C to the key K via the label L.

– Fairness. If A holds con K then it is also available to B.

3.4 Gürgens and Rudolph’s Analysis

In their analysis [8], Gürgens and Rudolph defined the protocol goals in terms
of predicates that must hold true for each participant.

1. For party A (originator), the predicate that must hold true is (NRR(B)).
This predicate states that if B has a valid EOO and con K for a particular
message M , then A must have a valid EOR and either possesses or has
access to con K.

2. For party B (recipient), the predicate that must hold true is (NRO(A)).
This predicate states that if A has a valid EOR and con K for a particular
message M , then B must have a valid EOO and either possesses or has
access to con K.

3.5 Remarks

Of the four analyses, three defined the protocol’s goals in terms of the correctness
of evidence as well as fairness. Only the SVO logic analysis [5] did not explicitly
formalise fairness. Thus, the SVO analysis is limited to results with respect to
the validity of evidence only. For the other analyses, goals were defined in terms
of the evidence each participant holds as well as what may be assumed with
respect to the availability of evidence to the other party.

176 S. Winwood and M.M.T. Chakravarty

4 Modelling Cryptographic Schemes

The ZG protocol makes non-standard use of encryption wherein it is utilised not
to keep a message secret, but rather to split a message M into a commitment C
and a key K. The commitment C = {M}K is first sent out by the sender to the
recipient together with the sender’s signature on the commitment. The recipient
sends back its own signature on the commitment. The key K that will allow B
to decrypt the message is sent by A to the trusted third party TTP who checks
that the key and the label is signed by A. If this is the case, the TTP signs the
key, the label and the identity of the two parties. This signed message will now
be made available to both A and B via an ftp-like server allowing them to have
access to it.

All of the analyses we have considered have formalised the cryptographic
functions in an abstract manner and assumed perfect encryption. Keys cannot
be guessed and certain parties keep their private keys secret. Zhou and Gollmann
did not require specific properties as to the uniqueness of the key K. Bella and
Paulson [7] explicitly allowed for A re-using an old key to encrypt a message
M ; their only restriction was that A does not use private signature keys for this
purpose. They also assumed that the TTP checks if the key sent in message 3 is
indeed a shared key and not a private signature key1. Gürgens and Rudolph [8]
explicitly state that, in their interpretation of the ZG protocol, A must choose
a new label L and a new key K for each protocol run. Schneider [6] did not
specify an explicit assumption for the uniqueness of K. The implication of A’s
re-use of an old key is that other participants who have a copy of the key K
(perhaps from previous protocol runs conducted with A) can try out this key
for decrypting A’s commitments.

5 Modelling Communications

The protocol makes three important assumptions on protocol communications:

1. The communications link is not permanently broken. Since the protocol relies
on an ftp-get operation to allow parties A and B fair access to con K in the
last part of the protocol, it has to be assumed that, eventually, both parties
will be able to obtain this evidence from the TTP.

2. The TTP does not store evidence indefinitely. In [4], it was suggested that
timestamps be used to set a lifetime for the availability of the evidence from
the TTP. It is further assumed that the TTP does not overwrite existing
evidence stored in the public directory.

3. A message label is unique and creates a link between the commitment and
the key [4]. Zhou and Gollmann gave several suggestions on how this label
may be constructed:
– L, where L is independent of the message M . M can be defined at a

later stage in the protocol (step 3).
1 The check they perform relies on the length of shared keys and signature keys.

Secure Untrusted Binaries – Provably! 177

– L = H(M) where H is a collision-free, one-way hash function. This links
L to M at step 1.

– L = H(M,K), if M belongs to a small message space.

We shall now see how these assumptions were formalised by the four analyses.

5.1 Zhou and Gollmann’s Analysis

In the protocol authors’ own analysis using SVO logic [5], they maintained the
same assumptions on communications, but did not formally model them.

5.2 Schneider’s Analysis

Schneider modelled communications via a medium through which all messages
are sent, received, or retrieved (in the case of the ftp-get operation). Schneider
further allowed for this medium to be unreliable with the following restrictions:

1. Messages cannot be altered in transit. Errors can occur in the transmission
but it is not possible for corrupted messages to be delivered; these messages
will be detected and disposed of. Schneider allows for deliberately altered
messages and assumes that the modification has been carried out by some
agent.

2. Messages cannot be mis-delivered. Initially, Schneider considered a more
unreliable medium which allows for messages to be mis-delivered. In that
context, however, Schneider discovered that fairness for party A cannot be
guaranteed since it is possible for the key K to be mis-delivered to B and
never reach the TTP .

Schneider did not model the expiry of the evidence stored at the TTP but
assumed a liveness property wherein, once a message has been made available
via ftp to an agent i, then it will “...always be available to any agent i′...” [6].

Schneider did not specifically model the uniqueness of the labels used in the
messages but did note that the label has to be unique for each protocol run.

5.3 Bella and Paulson’s Analysis

In Bella and Paulson’s analysis [7], a trace is a list of network events consisting
of either of the following:

– Says A B X: A sends X to B
– Gets A X: A receives X
– Notes A X: A notes down X

Their model does not force events to happen, i.e., it is possible that the pre-
conditions for a certain event have been met but the event does not occur. This
allows for assumption of an unreliable communications medium, i.e., a message

178 S. Winwood and M.M.T. Chakravarty

that has been sent may not be received and protocol runs may be abandoned.
However, they did assume that messages cannot alter during transmission.

The uniqueness of labels was assumed and a label was modelled as a nonce.
They assumed that, for the first message in the protocol, A chooses a fresh label.
Bella and Paulson did not seem to consider setting a lifetime on the evidence
stored at the TTP .

5.4 Gürgens and Rudolph’s Analysis

In Gürgens and Rudolph’s analysis [8], they modelled the assumption that the
communications medium is not permanently broken by putting a restriction on
the behaviour of a dishonest agent. They assumed that a dishonest agent cannot
permanently block the delivery of sub K from A to the TTP nor the retrieval
of con K from the TTP . Thus, they assumed that a dishonest agent can only
remove messages to which it is explicitly named as the intended recipient.

They further assumed that the evidence in the TTP has a limited lifetime.
However, they imposed their own policy on the storage and lifetime of evidence
at the TTP . Evidence is available only until A and B have retrieved it. They
further assumed that the TTP has some way of determining whether A and B
have retrieved the evidence. These are additional assumptions and were not part
of the original protocol description. Although Zhou and Gollmann acknowledged
that the evidence cannot be kept at the TTP indefinitely, they did not specify
that the evidence be deleted soon after it is retrieved by both A and B. They
had proposed to use a timestamp defined by A relative to the TTP ’s clock; this
timestamp T specifies a deadline for the storage of evidence at the TTP . B can
refuse to acknowledge a commitment sent by A if B does not agree with the
deadline. This suggestion does not require additional actions on the part of the
TTP . Furthermore, the protocol authors did not require that A and B inform
the TTP that they have retrieved the evidence; they assumed that the TTP
only notarises message keys and provides directory services.

Gürgens and Rudolph’s Attack No. 1
α.1 A→ B : fEOO,B,L,C,EOO
α.2 B → A : fEOR,A,L,EOR
α.3 A→ TTP : fSUB ,B,L,K, sub K
α.4 A↔ TTP : fCON ,A,B,L,K, con K
α.5 B ↔ TTP : fCON ,A,B,L,K, con K
β.1 A→ B : fEOO,B,L,C2,EOO2
β.2 B → A : fEOR,A,L,EOR2

This attack requires A to first complete a protocol run with B. After this
run, A possesses EOR signed by B and con K signed by the TTP . con K will
be deleted by the TTP after steps α.4 and α.5. In the second protocol run, A
uses the same key K and label L that it used in the first run but sends a new
commitment C2, where C2 = {M2}K . After receiving EOR2 from B, A can
present this together with the con K it received from the first run as “evidence”
of receipt for M2 although A will never complete the second protocol run.

Secure Untrusted Binaries – Provably! 179

In the second attack, Gürgens and Rudolph considered that L = H(M,K).

Gürgens and Rudolph’s Attack No. 2
α.1 A→ B : fEOO,B,L,C1,EOO1

: where L = H(M2,K),C1 = {M1}K

α.2 B → A : fEOR,A,L,EOR1
α.3 A→ TTP : fSUB ,B,L,K, sub K
α.4 A↔ TTP : fCON ,A,B,L,K, con K
α.5 B ↔ TTP : fCON ,A,B,L,K, con K
β.1 A→ B : fEOO,B,L,C2,EOO2

: where L is the same and C2 = {M2}K

β.2 B → A : fEOR,A,L,EOR2

The labelL is constructed from the second message,M2 ofA and the keyK that
Awill use for both runs. After α.5,B hasK andC1. Although Zhou and Gollmann
did not explicitly state that A and B check the evidence they obtained, it is rea-
sonable to expect that A andB check their respective evidence since it is assumed
that the TTP is a lightweight notary only. When B detects that L and C1 do not
match, he would be warned against proceeding in protocol run β with A.

Gürgens and Rudolph’s third attack is against a variation of the ZG proto-
col that utilises timestamps [10]; we do not discuss this attack since the other
analyses refer to the original protocol.

6 Modelling Participants

In a non-repudiation protocol, it is expected that both parties at the outset do
not trust each other. It is for this reason that both parties wish to obtain evidence
of the other party’s participation in the protocol. In the SVO logic analysis [5],
it was assumed that the TTP is trustworthy. It was further assumed that either
party may abort a protocol run, without disputes, at certain stages. Since this
analysis was conducted from the point of view of a judge that will preside over
disputes, there were additional assumptions with respect to the public signature
verification keys of A, B and the TTP . It was assumed that these keys are valid.

Schneider [6] allowed for participants not following the protocol; however,
he assumed that a participant does not divulge his secret signing key. Each
participant is modelled in terms of the messages it can transmit and receive,
retrieve from the TTP and present as evidence in case of disputes. Schneider
further assumed that a participant can only expect fairness if it follows the
protocol. Bella and Paulson [7] assumed that A, B, and the TTP do not belong
to the set of compromised agents. Without this assumption, the intruder would
have access to SA,SB , and STTP .

Gürgens and Rudolph analysed scenarios wherein A deliberately tries to ob-
tain unfair evidence for a message. However, their attacks work not because
A was “allowed” to misbehave. The ZG non-repudiation protocol is motivated
by the possibility that A or B will not follow protocol rules. The Gürgens and
Rudolph attacks work because they redefined the behaviour of the TTP .

180 S. Winwood and M.M.T. Chakravarty

7 Modelling the Intruder

In the SVO logic analysis [5], no intruder is modelled and the objective was to
determine the beliefs that may be derived by parties A and B. This was due
to the limited scope of a belief logic method [5]. In Schneider’s analysis [6], it
was observed that the two parties essentially need protection from each other.
Bella and Paulson [7] analysed the protocol both with and without a spy. The
spy is assumed to be capable of faking messages and is in control of a set of
bad agents. However, they did not include the TTP , A, or B in the set of bad
agents. Gürgens and Rudolph assumed that only B and the TTP are honest.

8 Conclusion

Schneider did not detect the Gürgens and Rudolph attacks since he did not
assume that evidence in the TTP server expires. Thus, in Schneider’s model, if
A attempts to re-use an old label, there will be duplicate entries in the TTP ’s
server and it is assumed that the TTP will detect this. Bella and Paulson did
not detect the attack since they also assumed the same properties for evidence
storage. Zhou and Gollmann’s SVO logic analysis was not intended to find flaws
in the protocol. Gürgens and Rudolph modified the original context by assuming
that evidence stored in the TTP is immediately deleted after A and B have
retrieved the evidence. They further assumed that the server would know when
to delete such a message. Thus, the two attacks they found are only relevant to
their version of the ZG protocol.

The Zhou-Gollmann non-repudiation protocol and its analyses presented re-
inforce the observation that incompatibilities in formalisations are not restricted
to the well-known discrepancies in the analyses of the Needham-Schroeder public
key and conventional key protocols. In order to objectively compare the results
of different analyses, it is clearly vital that we must take due account of the pro-
tocol’s original security context as well as the assumptions in the formal protocol
models.

Different analyses may be compared by comparing their security contexts. This
includes the definition of goals (both of the protocol and the analyses) and the
drawing out of assumptions with respect to communications, participants, cryp-
tographic functions, and the intruder. Discrepancies in at least one of these areas
could render differences in analyses results. Such observation may seem trivial,
but there is still a tendency in some comparative discussions to forget the security
contexts and instead concentrate on the discovery of supposedly new attacks.

Secure Untrusted Binaries – Provably! 181

jhg

182 S. Winwood and M.M.T. Chakravarty

jhg

Secure Untrusted Binaries – Provably! 183

jhg

184 S. Winwood and M.M.T. Chakravarty

jhg

Secure Untrusted Binaries – Provably! 185

jhg

186 S. Winwood and M.M.T. Chakravarty

jhg

9 Future Work

The observations derived from the four analyses of the Zhou-Gollmann protocol
were based on an informal comparison of five aspects of the protocol model. An
interesting extension of our work would be to determine if these five aspects (and
possibly others) could be formalised in a specific framework of analysis.

It was shown how a “new” attack was discovered by one analysis through
the differences in its formalisation of the protocol. It would be natural to ask
whether such differences have resulted in the omission of attacks on this and
other protocols.

References

1. Needham, R., Schroeder, M.: Using encryption for authentication in large networks
of computers. Communications of the ACM 21 (1978) 993–999

2. Pancho, S.: Paradigm shifts in protocol analysis. In: Proceedings of the 1999 ACM
New Security Paradigms Workshop, ACM Press (1999) 70–79

3. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In: Tools and Algorithms for the Construction and Analysis of Systems.
Lecture Notes in Computer Science 1055, Springer-Verlag (1996) 147–166

4. Zhou, J., Gollmann, D.: A fair non-repudiation protocol. In: Proceedings of the
1996 IEEE Symposium on Security and Privacy. (1996) 55–61

5. Zhou, J., Gollmann, D.: Towards verification of non-repudiation protocols. In: Pro-
ceedings of 1998 International Refinement Workshop and Formal Methods Pacific,
Canberra, Australia. (1998) 370–380

6. Schneider, S.: Formal analysis of a non-repudiation protocol. In: Proceedings of
the 11th IEEE Computer Security Foundations Workshop. (1998)

7. Bella, G., Paulson, L.C.: Mechanical proofs about a non-repudiation protocol. In
Boulton, R.J., Jackson, P.B., eds.: Proceedings of the 14th International Conference
on Theorem Proving in Higher Order Logics. Number 2152 in Lecture Notes in
Computer Science, Springer Verlag (2001) 91–104

8. Gürgens, S., Rudolph, C.: Security analysis of (un-)fair non-repudiation protocols.
In: Proceedings of the Conference on Formal Aspects of Security. (2002)

9. Syverson, P.F., van Oorschot, P.C.: On unifying some cryptographic protocol logics.
In: Proceedings of the IEEE Symposium on Research in Security and Privacy.
(1994) 14–28

10. Zhou, J., Deng, R., Bao, F.: Evolution of fair non-repudiation with TTP. In: Pro-
ceedings of the 1999 Australasian Conference on Information Security and Privacy
(ACISP). (1999)

Normative Specification:
A Tool for Trust and Security

Olga Pacheco

CCTC/Department of Informatics,
University of Minho, Portugal

omp@di.uminho.pt

Abstract. Many software systems can be viewed as organizational sys-
tems, where the different components are seen as autonomous entities,
interacting with each other, collaborating toward system’s aims.In such
systems we may not have full control over the behavior of all its com-
ponents. Normative specification of an organizational system, provides a
way of describing the norms that regulate the behavior of a system and
of its components, stating how they are expected to behave, assuming
however, that they may deviate from that ideal behavior. In this paper
we use an action and deontic modal logic for the normative specification
of organizational systems. This logical framework allows us to describe
expected behavior of agents, detect non-ideal behavior and identify the
agents that, direct or indirectly, are responsible for it. We argue that nor-
mative specification can be an useful tool to increase trust and security
in complex computational systems and propose a responsibility-based
trust concept.

1 Introduction

Computer systems interact with humans by rending services or solving problems.
People trust them if they don’t fail, or, if they do, by believing that someone will
be responsible by any damage caused. But we cannot attribute responsibilities
to a computer system (computers don’t go to prison, they don’t own goods, ...).
In the end, there must always be some person (human or artificial1) responsible.
Even in some network, where you interact with “faceless” software agents, you
know that, indirectly, you are interacting with some person, company, university,
or some other institution, with some legal statute. And if this link to persons does
not exist, or it is not possible to trace it, there are trust and security problems.
Cases abound in the Internet context.

So, how should we establish this link between software agents and persons?
Before trying to answer this question, lets notice that a software system is part
of the organization where it is used. Moreover, many software systems can be
viewed, themselves, as organizational systems, where the different components
are seen as autonomous entities, interacting with each other, collaborating to-
ward system’s aims. This view suggests that the components of a computer
1 Artificial person in the legal sense.

T. Dimitrakos et al. (Eds.): FAST 2005, LNCS 3866, pp. 187–202, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

188 O. Pacheco

system must, somehow, be integrated in the organization structure. In this pa-
per we suggest an unifying and integrating model, where software agents are
specified at the same level as human agents: they are just entities acting and
interacting in some society or organization.

In complex computational systems we may not have full control over the be-
havior of all its components, because we might not have complete information,
because it might be too complex or expensive, because humans are involved
(with their intrinsic unpredictability), or for some other reason. But, at least,
we must know how each component is expected to behave, otherwise the result of
combining them to form the system would be useless. Normative specification of
an organizational system, provides a way of describing the norms that regulate
the behavior of a system and of its components, stating how they are expected to
behave, assuming however, that they may deviate from that ideal behavior, and
being prepared to react to that. In this paper, for simplicity reasons, we refer to
norms just as the set of obligations and permissions that result from them2.

Lets state some language conventions that will be used through the paper.
We will adopt the designation “agent” for any entity capable to act (human,
software/hardware component or even some organization). Following this an-
thropomorphic convention, we will say that a software/hardware component
can “occupy” positions in an organization and say that it can “act” and bring
about some state of affairs.

In this paper we use an action and deontic modal logic for the normative
specification of organizational systems and of interaction between agents. This
logical framework allows us to describe expected behavior of agents, detect non-
ideal behavior and identify the agents that, direct or indirectly, are responsible
for it. Based on the possibility to trace responsibility, a trust notion is suggested.
We argue that normative specification can be an useful tool to increase trust and
security in complex computational systems.

Structure of the Paper. We start by briefly presenting the multi-modal logic
that will be used in this paper to formally specify and reason about organiza-
tional systems and interaction. In section 3 it is presented the model we adopt
for organizational systems and for interaction between agents, which is based on
the legal concepts of artificial person and contract. A concept of trust is then
suggested. In section 4 we specify an example and reason about it. We conclude
with section 5, where we synthesize the main contributions of the paper and
mention some research directions.

2 An Action and Deontic Logic: LDA

In this paper we will use logic as a tool to formally specify concepts relevant to
the problem we are addressing (e.g. action in a role, representation, responsibil-
ity, etc.), to express relations between them and to characterize their properties.
This logical framework will be used to specify contract-based interactions in
2 For a more detailed and realistic view of norms see, for example, [21], [15].

Normative Specification: A Tool for Trust and Security 189

some society of agents (including human agents, software/hardware agents, in-
stitutional agents), and reason about them.

2.1 Roles and Action in a Role

S. Kanger, I. Pörn and L. Lindahl, have combined deontic and action logics and
used them to describe social interaction and complex normative concepts (see
e.g. [11], [18],[9] [12]). They introduce a relativized modal action operator, Ei,
being expressions like Eiψ read: agent i brings about that ψ. This approach has
been followed by many researchers (e.g. [1] ,[7], [10], [19], [20]).

Following this tradition, in [4] it was proposed a new action operator that
tries to capture the notion of action of an agent in a role. Informally, roles are
properties or qualifications of agents, which are relevant for action and usually
correspond to positions in an organization or in contracts (e.g. president of the
board, representative). 3

To know the role an agent is playing when he acts is crucial to analyze the
deontic classification of the action (e.g. is it a permitted action?) and the effects
of the action (e.g on other agents actions or legal effects – obligations resultant
from the action). For example, when an agent x acts as president of a company y
bringing about a state of affairs ψ, he also acts as representative of that company,
and as a result, his action will count as an action of company y. And if he does
something wrong when acting in the role of president of y, the company will,
most probably, be also responsible for x’s actions. But if x does the same action
in another role, his action will not count as an action of company y.

In [4] it was proposed a new action operator of the form Ea:r (for a an agent
and r a role), being expressions of the form Ea:rψ read as: agent a, playing the
role r, brings it about that ψ. The modal operator Ea:rψ relates an agent playing
a role with the state of affairs he brings about, omitting details about the specific
actions that have been performed (and setting aside temporal aspects). It has
an adequate abstraction level to be used in high-level models of specification,
where we want to describe agent’s behavior without wanting to enter in details
about the specific actions and tasks.

These action operators were combined with personal deontic operators in
order to express obligations and permissions of agents in roles (Oa:rψ – read as
agent a is obliged to bring about ψ by acting in role r; Pa:rψ – read as agent a
is permitted to bring about ψ when acting in role r).

Next, we will present the main features of the logic LDA proposed in [4] and
[17], in a simplified and very brief way. Due to space limitations, we will omit
details about semantics.

2.2 The Formal Language of LDA

LDA is a multi-modal (with deontic and action modal operators) first-order
many-sorted language. The non-modal component of LDA is used to express
3 Many other researchers use the concept of role and try to formalize it, for purposes

similar to ours (e.g. [2], [6], [13], [22]).

190 O. Pacheco

factual descriptions, and properties and relationships between agents. It contains
a finite number of sorts, not related with agents or roles, and three special sorts:
Ag (the agent sort), R (the role sort) and AgR (the agent in a role sort). In this
paper we will decompose the agent sort Ag in three distinct agents sorts: iAg -
the institutional agent sort, sAg - the software agent sort, hAg - the human agent
sort. When it is not relevant to distinguish the kind of agent we will just use Ag.

As usual, for each of these sorts we assume an infinite number of variables,
and possibly some constants. (We are not considering variables of the sort AgR).
There may be functions between these sorts, but we do not consider any function
with Ag as co-domain (the terms of sort Ag are either variables or constants).
The terms of each of these sorts are defined as usual.

The terms of the sort AgR are built as follows:
(i) If t is a term of sort Ag and r is a term of sort R, then t : r is a term

of sort AgR.
For each role r, there exists a predicate (qualification predicate), denoted by

is-r of sort (Ag). qual(a : r) is an abbreviation of is-r(a), and intuitively means
that agent a is qualified to play the role r.

The formulas of LDA are inductively defined as follows:

(i) if p is a predicate symbol of sort (s1, . . . , sn) and t1, . . . , tn are terms of
sort s1, . . . , sn, then p(t1, . . . , tn) is a formula (an atomic formula);

(ii) if φ is a formula, then ¬φ is a formula;
(iii) if φ1 and φ2 are formulas, then (φ1 ∧ φ2) is a formula;
(iv) if φ is a formula and xs is a variable of sort s, then (∀xs)φ is a formula;
(v) if φ is a formula and a : r is a term of sort AgR, then Ea:rφ, Oa:rφ and

Pa:rφ are formulas.

The other standard logical connectives (∨, → and ↔) and the existential
quantifiers are introduced through the usual abbreviation rules.

2.3 Some Logical Principles of LDA

The logical principles satisfied by the proposed operators have been discussed
and presented in [4] and [17]. Here, we just list some of those principles, related
with the action and deontic modal operators, to give some intuition about them.4

The formal properties of the action operator Ea:r are described bellow:

Axioms:
(TE) Ea:rB → B success operator
(CE) Ea:rA ∧ Ea:rB → Ea:r(A ∧B)
(Qual) Ea:rB → qual(a : r) agents that act in roles are qualified
(Itself) (∀x)qual(x : itself) every agent is qualified to act as itself

Proof rule:
(REE) If A ↔ B then Ea:rA ↔ Ea:rB

4 Naturally, we assume that all tautologies are axioms of our logic, and the set of
theorems of our logic is closed under Modus Ponens. With respect to the first-order
component, we have the usual properties of quantifiers.

Normative Specification: A Tool for Trust and Security 191

With respect to the formal properties of the deontic operators, and of the
relationships between each other and with the action operator, we consider
the following axioms and proof-rules:

Axioms:
(CO) Oa:rA ∧Oa:rB → Oa:r(A ∧B)
(O → P) Oa:rB → Pa:rB
(O → ¬P¬) Oa:rB → ¬Pa:r¬B
(O ∧ P) Oa:rA ∧ Pa:rB → Pa:r(A ∧ B)
Proof rules:
(REO) If A ↔ B then Oa:rA ↔ Oa:rB
(RMP) if A → B then Pa:rA → Pa:rB
(RMEP) If Ea1:r1A → Ea2:r2B then Pa1:r1A → Pa2:r2B

More details can be found in the above referred papers.

3 A Role Based Model for Organizations and Interaction

3.1 Artificial Person’s Classification: A Safety Mechanism

When a set of persons decide to create a company, with some purpose in mind, the
company must be classified in legal terms as an artificial person (e.g. as an associ-
ation, as a foundation, as a liability society,...). This classification implies a formal
description of the structure of the company (a set of positions that the members
of the company will occupy) and a set of norms describing how the holders of each
position are expected to behave (what they are obliged to do, or not to do, what
are their powers, ...). The structure of the company and the norms regulating it,
are described in the statutes of the company. The statutes are public and are de-
termined, at least in general terms, by the legal classification of the company. The
statutes describe the company’s aims and how they will be achieved.

Any artificial person has juridical personality (i.e. it may be the subject of
obligations, rights,...) and legal qualification (i.e. it can exercise their rights and
be responsible for the unfulfillment of obligations)5. Law imposes the legal clas-
sification of a company as an artificial person, for security reasons: people that
will interact with the company must know how they should expect the company
to behave and who is going to be responsible when things go wrong. For more
details about this issue see [16] and [17].

We think that a similar characterization, legal or not, should be transposed
to virtual organizations, because, although they exist and act in a virtual en-
vironment, they, directly or indirectly, interact with people, and so, the same
security issues are present.

3.2 A Role-Based Model

Based on the legal concept of artificial person presented above, in [17] we have
proposed a model of organizations (human or virtual), that we called institutional
5 This fact allow us to say that a company may be seen as an agent.

192 O. Pacheco

agent. An institutional agent is an abstract entity, having a structure described
by a set of roles and a set of norms defining what should be done in each role
(a set of obligations or permissions6 – the deontic characterization of the role). In
this context, roles are positions in an organization (e.g. president of the board
of directors, associate, secretary, ...). The roles of an institutional agent are
represented by a set of predicates is − role(r, i) of sort (R,Ag), meaning that
role r is part of the structure of institutional agent i.

Those roles are occupied by agents (human agents (hAg), software/hardware
agents (sAg) or other institutional agents (iAg)).This information is expressed
in our model by a set of predicates of the form qual(a : r) of sort AgR, meaning
that agent a is qualified to act in role r. These agents may change through time,
without affecting the identity of the institutional agent. The deontic characteri-
zation of a role in an organization is part of the identity of the organization and
does not depend on the agent that holds that role in a particular moment. To
capture this idea, deontic notions will be attached to roles, but they are actually
interpreted as applied to the holders of such roles, when acting in such roles
(deontic notions are only meaningful when applied to agents). To capture this
we introduce the following abbreviations:

Orψ
abv= (∀x)(qual(x : r) → Ox:rψ)

Prψ
abv= (∀x)(qual(x : r) → Px:rψ)

When we have multiple agents holding a role, all of them “inherit” the deontic
characterization of the role. For instance, if there is some obligation associated
to a role (e.g. associates are obliged to pay a fee), all of its holders will be under
that obligation and all of them will have to fulfill it 7.

An institutional agent is an agent that interacts in society like any other
agent: it can establish contracts or other kind of relationships with other agents,
it can occupy roles and act on that roles, it may be the subject of obligations
or other normative concepts, and may be responsible for the unfulfillment of
obligations or other non-ideal situations. But an institutional agent, being an
abstract entity, is not capable to act directly. So, how can it fulfill obligations?
It acts through the agents that occupy the roles of its structure. The actions
of the agents that hold roles in the structure of an institutional agent, count as
actions of the institutional agent, through representation mechanisms, that can
be captured as follows:

r1 : REP (a : r2, ψ) abv= (∀x)(Ex:r1ψ → Ea:r2ψ)

6 Other normative concepts can be used to characterize roles. For simplicity reasons,
we only use the two just mentioned.

7 As argued in [17] a role is different from the set of its holders. We cannot attribute an
obligation to the set of the holders (e.g. directors of a company), as a whole, and as-
sume that one of its members may fulfill the obligation on behalf of the others, without
knowing who that agent was, because it would not be possible to attribute responsibil-
ities for that action. If we feel the need for that, we probably need to consider another
institutional agent (e.g. the board of directors) and characterize its internal structure,
defining how the obligation of this new agent may be fulfilled by its members.

Normative Specification: A Tool for Trust and Security 193

r1 : REP (a : r2,ψ) means that the role r1 is a representative role of a, for ψ.
Thus, any agent that holds role r1 and brings it about that ψ when acting

in that role, produces ψ on behalf of a (acting in role r2). ψ is the scope of
representation.

It must be clearly defined in the structure of an institutional agent what are
the representative roles (see below) and the respective scope of representation.
Only the agents that hold those roles can act on behalf of the institutional
agent.

Moreover, it must be also defined how the obligations of an institutional agent
are transmitted to the roles of its structure, stating who will be responsible for
fulfilling each of those obligations. To express the transmission of obligations of
an organization to specific roles of its structure (and indirectly, to the holders
of those roles), we can use formulas like the following ones:

Ox:itselfψ → Orψ (for r a role of the structure of organization x).

3.3 Contracts as a Safety Mechanism

When two agents8 establish a contract between each other, they commit them-
selves to act in accordance with what is stated in that contract. Usually, in
a contract the agents involved attribute obligations, permissions, powers, to
each other, and establish the sanctions that should be applied when the parts
violate what as been formally agreed. In this sense, contracts are a safety mech-
anism. That is why people use them. We suggest to use them also in virtual
environments.

When two agents establish a contract between each other, they may attribute
roles to each other (e.g. mandatory and manager in a mandate contract) and
deontically characterize those roles. One of the agents may be representative of
the other agent. In that case, it must be also defined in the contract the scope
of representation for that role. To express this representation notion associated
to an agent in a role, we introduce a new abbreviation:

(x : r1) : REP (y : r2, ψ) abv= (Ex:r1ψ → Ey:r2ψ)

Sometimes we may want to say that an agent x is representative of another
agent y, for everything, in the sense that, everything x does is done on behalf of
y. To express this situation we will use the following abbreviation:

(x : r1) : REP (y : r2, ∗) abv= (Ex:r1ψ → Ey:r2ψ)

Using C(x, y) to denote (the content of) a contract between agents x and y,
we may say that a contract C(x, y) is a formula similar to the following one:

qual(x : r1) ∧ qual(y : r2)∧ Attribution of roles to agents
Px:r1A1 ∧Ox:r1A2 ∧ . . . Deontic characterization of r1

Py:r2B1 ∧Oy:r2B2 ∧ . . . Deontic characterization of r2

x : r1 : REP (y : r2, C1) ∧ . . . Scope of representation of r1

8 For simplicity reasons we only consider contracts between two agents.

194 O. Pacheco

y : r2 : REP (x : r1, D1) ∧ . . . Scope of representation of r2

Ex:r1E1 → Oy:r2G1 Conditional obligation
Ex:r1¬L1 → Ox:r1M1 Sanction to violations of Ox:r1L1

. . .

The formalization of conditional obligations or of the sanctions resultant from
violations of norms will not be addressed it in this paper (see, e.g. [3] about
dyadic logics and contrary-to-duties).

An example of a contract between a and b:

C(a, b) = qual(a:r1) ∧ qual(b:r2)
Pa:r1B ∧ Pa:r1C ∧ Ob:r2D ∧
(a : r1) : REP (b : r2, B) ∧ (a : r1) : REP (b : r2, C)

In this contract, the qualifications of r1 and r2 are assigned to a and b,
respectively. It is given permission to a to act on behalf of b for B and C. Agent
b becomes under obligation D.

Another example is a contract, where agent a accepts to hold role r in the
organization i, is:

C(a, i) = qual(a:r) ∧
Oa:rB ∧ Pa:rC ∧ Oi:itselfD
Ea:r¬B → Oa:rF

In this contract, specific obligations and permissions are attributed to agent
a when acting in role r. These specific obligations and permissions will be added
to the deontic characterization of role r (defined in the organization’s structure
independently of any agent) which will be inherited by agent a because he will
become holder of r. Sanctions for unfulfilled obligations are also stated.

3.4 Computer Systems and Organizations

A software system is part of the organization where it is used. Moreover, many
software systems can be viewed, themselves, as organizational systems, where
the different components are seen as autonomous entities, interacting with each
other, collaborating toward system’s aims. This view suggests that the compo-
nents of a computer system must, somehow, be integrated in the organization
structure.

Some tasks may be done either by a human agent or by a software sys-
tem. And it may be irrelevant for those who interact with that system if those
tasks are done by human or software agents (e.g to buy a ticket to a machine
or to an human employee; to submit a conference paper to a cyber chair or
to a human chair). According to this, we may consider that software compo-
nents may play roles in an organization as any human agent, and be them-
selves classified as agents9. By doing that, it will be clarified what the
software component is expected to do (through role characterization: if a soft-
ware agent occupies a role, it should behave as described in that role). More-
over, when it fails it will be possible to identify who will be responsible for
9 Of course not all software programs should be classified as agent. Only those ren-

dering services that may correspond to some role.

Normative Specification: A Tool for Trust and Security 195

that failure. Lets discuss this responsibility issue, trying to understand what are
the differences between a software agent and a human agent with respect to
responsibility.

As we said before, we cannot attribute responsibilities to a computer system.
There must always be some person (human or artificial) responsible for it. When
I interact with an ATM machine and something goes wrong, I complain to the
bank responsible for it. Another example: when I interact with a cyber chair
trying to submit a paper to a conference, and I don’t succeed, I try to contact
the member of the organizing committee responsible for it.

We may identify different persons that may be responsible for a software
failure:

– the developer of the software – if the software fails because it is not well done
(some technical or conceptual problem).

– the user of the software – if he does not follow the use instructions of the
software.

– the company where the software is used – if there is no bad use, the company
that owns the software and provides the service, must be responsible for
any damage caused; the company may transmit that responsibility to other
agents: the builder of the software or the agent of the company that maintains
the software.

How can we make sure that it is possible to trace responsibilities from software
agents to persons? First of all, a software agent must always act as representa-
tive of some other agent (the institutional agent or some other agent member of
the institutional agent). To capture that, we must define a “contract” between
the organization and the software agent, stating the role it plays in the orga-
nization, and defining that it always will act as representative. Secondly, there
must exist (formal or informal) contracts between the persons involved: a con-
tract between the company and the software developer (to assure maintenance of
the software), a contract between the software user and the company (securing
user’s rights, in one side; securing the company against bad use, on the other
side).

3.5 A Trust Concept

Lets return to our initial statement: people trust a software system if it does not
fail or, when it does, if it is possible to determine who is responsible for that fail-
ure (in order to repair any damage caused). Based on this very restricted notion
of trust, we propose the concept of trusty institutional agent: an institutional
agent is trusty with respect to its software components if it is possible to deter-
mine the persons (human or artificial) responsible for the actions of the software
components that play roles in its structure. We will now try to formalize this
concept in the logic.

196 O. Pacheco

We will start by defining what we mean by responsibility.10 We will consider
(in a very simplistic way) only responsibility for action in a role:

RESP (x : r,φ)
def
= Ex:rφ

If we combine this responsibility concept with the representation concept
presented before, we can trace responsibilities for action and infer:

Ex:rφ ∧ (x : r) : REP (y : r1,φ) → RESP (y : r1,φ)

Thus, we say that an agent x acting in role r is responsible for φ, if he acted in
that role to bring about φ, or if we can infer, through representation mechanisms,
that he brought about φ (indirectly).

We can now use this responsibility concept to define different levels of trust:

T-SAR: a software agent in a role is trusty for some action if, when it pro-
duces that action in that role, it is possible to find some non-software agent
responsible for that action:

T − SAR(sa : r,φ)
def
= Esa:rφ→ ∃y∃r1(RESP (y : r1,φ) ∧ ¬(is− sAg(y)))

where is− sAg(y) is a predicate meaning that y is a software agent.
T-SA: a software agent is trusty for some action:

T − SA(sa,φ)
def
= ∀r((qual(sa : r) ∧ Prφ) → T − SAR(sa : r,φ))

T-I: an institutional agent is trusty for some action:

T − I(i,φ)
def
= ∀sa((is− sAg(sa) ∧member(sa, i)) → T − SA(sa,φ))

where member(a, i)
def
= ∃r(is − role(r, i) ∧ qual(a : r)) and is − role(r, i)

means that r is a role of the structure of i.

4 An Example

We are going to synthesize the information presented above, specifying the insti-
tutional agent of Fig.1, the agents that support its structure and the contracts
established between them. Fig.1 represents part of the structure of a railway
company (i), having two software agents playing roles in it: a ticket machine
10 A first and natural attempt would be simply to use the representation notion pre-

sented before as a way of transmission of responsibilities. But there is a problem:
representation is not transitive. We cannot say that:

(x : r) : REP (y : r1, φ) ∧ (y : r1) : REP (z : r2, φ) → (x : r) : REP (z : r2, φ)

Representation is a relationship between agents. There might exist a relationship
between x and y where it is stated (x : r) : REP (y : r1, φ); there might exit another
relationship between y and z where it is stated (y : r1) : REP (z : r2, φ). But from
those two relationships we cannot infer that there is a relationship between x and z.
For example, x may be representative of a company k for φ, and the company k may
hold the role of single auditor of company i, being representative of i for φ. From
that we cannot conclude that x is representative of i for φ (there is no relationship
between them).

Normative Specification: A Tool for Trust and Security 197

Legend:
Human agents: h1..h6;
Software agents: s1 - railway time-table database, s2 - ticket machine ;
Roles: r1 - railway manager, r2 - ticket seller, r3 - schedule manager

Fig. 1. Software agents in an institutional agent

(s2) that plays the role of ticket seller (r2), which is also played by a human
agent (h6); a railway time-table database (s1) that helps (h2) the schedule man-
ager (r3) to tell information about the railway time-table. h3 is a user that
will consult railway time-table, using s1. h5 is a user that will buy tickets us-
ing s2. h1 is the railway manager (r1) and h4 supplies the software s1 for the
company i.

The specification of an institutional agent involves a name, i, and a structure
STi: STi =< Ri,DCRi,TOi,RERi >.
STi, the structure of the organization i, is formed by a set of roles Ri, the

deontic characterization of each role DCRi, the transmission of obligations from
the organization to specific roles of its structure TOi and the representative roles
RERi

11.

STi = < Ri, DCRi, TOi, RERi >
Ri = { is− role(r1, i), is− role(r2, i), is − role(r3, i), ...}
DCRi = { Or1A1, Pr1B1,

Or2A2, Or2B2,
Or3A3, ...}

TOi = { Oi:itselfA1 → Or1A1, Oi:itself A2 → Or2A2, Oi:itselfA3 → Or3A3, ...}
RERi ={ r1 : REP (i : itself, A1), r2 : REP (i : itself, A2), r3 : REP (i : itself, A3),...}

11 The specification of an organization includes other components, not considered here
for simplicity reasons.

198 O. Pacheco

where:
A1 - Define trains’ schedule; B1 - Change ticket prices; A2 - Collect the appropriate
ticket prices; B2 - Inform users to use the exact amount of money, when there is no
change; A3 - Inform about train schedule.

Notice that r1 is a representative role of the institutional agent for A1 (so, its
holder, acts on behalf of the institutional agent, when bringing about A1 in role
r1), r2 a representative role of i for A2 and r3 is a representative role of i for A3.
Another remark: when the institutional agent i is under the obligation to bring
about A1, the holder of the role r1 will be responsible for bringing about A1,
fulfilling that obligation on behalf of i; when the institutional agent i is under
the obligation to bring about A2 or A3 they will be transmitted to the holders
of r2 or r3, respectively.

A society of agents will be characterized by a set of contracts between the
agents of the society, regulating their interactions. The society of agents of Fig.
1 may be specified by a tuple with the following components:

SA =< iAg, sAg,hAg,CONT >

where iAg is the specification of each institutional agent of the society (it is
formed by a set of pairs < i,STi >, as explained above); sAg contains the
identification of the software agents of the society; hAg contains the identification
of the human agents of the society; and CONT contains the contracts that the
agents established between each other.

SA = < iAg, sAg,hAg,CONT >
iAg = { is− iAg(i)}
sAg = { is− sAg(s1), is− sAg(s2)}
hAg = { is− hAg(h1), is− hAg(h2), is− hAg(h3), is− hAg(h4),

is− hAg(h5), is− hAg(h6)}
CONT = { Cont1(h1, i), Cont2(h2, i), Cont3(h6, i),

Cont4(s2, i), Cont5(s1, h2)
Cont6(h4, i), Cont7(h3, i), Cont8(h5, i)}

Cont1(h1, i) = qual(h1 : r1)
Cont2(h2, i) = qual(h2 : r3)
Cont3(h6, i) = qual(h6 : r2)
Cont4(s2, i) = qual(s2 : r2) ∧ (s2 : r2) : REP (i : itself, ∗)
Cont5(s1, h2) = qual(s1 : r) ∧ (s1 : r) : REP (h2 : r3, ∗)
Cont6(h4, i) = qual(h4 : r4) ∧ qual(i : r5) ∧Oi:r5A4 ∧Oh4:r4B4
Cont7(h3, i) = qual(h3 : r6) ∧Oh3:r6A5 ∧Oi:itselfB5
Cont8(h5, i) = qual(h5 : r8) ∧Oh5:r8A6 ∧Oi:itselfB6

Contracts Cont1(h1, i),Cont2(h2, i),Cont3(h6, i) formalize the relationship
established between i and h1, h2 and h3 respectively, assigning to h1, h2 and h3
the roles r1, r2 and r3, respectively. In contract Cont4(s2, i) role r2 is assigned
to software agent s2. This agent will act as representative of the institutional
agent i. In contract Cont5(s1,h2) role r is assigned to the software agent s1,
that will represent agent h2 : r3. Contract Cont6(h4, i) represents a mainte-
nance contract: h4 is responsible for the software s1. Contract Cont7(h3, i) and

Normative Specification: A Tool for Trust and Security 199

Cont8(h5, i) represents user contracts: it formalizes the norms that agents inter-
acting with the software should respect.

The specification of this society of agents can now be analyzed in order to see
if it obeys to the safety requirements discussed above.

It is easy to prove that the railway company is trusty with respect to its
software components, i.e., all the software agents of the company have per-
sons responsible for their actions: h2 is responsible for s1, and i is responsible
for s2.

Lets now analyze the chain of responsibilities for action.

4.1 Chain of Responsibilities

The logic LDA can be used to trace responsibilities for action. Assuming that an
action of an agent in a role occurred, we want to analyze its deontic effects or
its effects on actions of other agents. Our aim is to verify if the action was valid
(Ea:rψ ∧ Pa:rψ), if there was a fulfillment of some obligation (Ea:rψ ∧ Oa:rψ)
or if there was a violation of some obligation (Ea:r¬ψ ∧ Oa:rψ). In this latter
case, we want to be able to identify the agents that are (directly and indirectly)
responsible for the violation.

A specification of a society of agents SA defines a particular language and
a set of formulas of that language. If we add this set of formulas to the logic
LDA as new axioms, we obtain a new logic that we call the theory defined by
SA, denoted by T (SA). Then, we can prove if some formula ψ can be deduced
from Δ in T (SA), beingΔ some set of formulas (typically action or deontic
formulas)12:

Δ �T (SA) ψ

Lets now present examples of inferences that can be done from the specification
presented above. Due to space limitations, we will not present the formal proofs,
but just sketch them.

Case 1: The railway time-table database s1 gives the user h3 correct informa-
tion about trains’schedule (A3), which is an obligation of i.

Δ = {Es1:rA3,Oi:itselfA3}
ψ = (Eh2:r3A3 ∧Oh2:r3A3)∧ (Ei:itselfA3 ∧Oi:itselfA3)

From Es1:rA3 and (s1 : r) : REP (h2 : r3, ∗) we can infer Eh2:r3A3.
As we have Or3A3 ∧ qual(h2 : r3) we may conclude that h2 has fulfilled his

obligation Eh2:r3A3 ∧Oh2:r3A3.
But we also have r2 : REP (i : itself,A3) and from that and Eh2:r3A3 infer

Ei:itselfA3.
Thus we have (Ei:itselfA3 ∧ Oi:itselfA3) meaning that i has fulfilled his

obligation.

12 Notions of theorem, and deduction from hypothesis are defined as in [5], for example.

200 O. Pacheco

Case 2: The railway time-table database s1 gives the user h3 incorrect informa-
tion about trains’ schedule (¬A3). This failure is due to a technical problem ¬B4
of the responsibility of h4 (we will represent this causality by an implication).

Δ = {Eh4:r4¬B4,Eh4:r4¬B4 → Es1:r¬A3,Oi:itselfA3}
ψ=(Eh4:r4¬B4∧Oh4:r4B4)∧(Eh2:r3¬A3∧Oh2:r3A3)∧(Ei:itself¬A3∧Oi:itselfA3)

From Eh4:r4¬B4 and contract Cont6 we have the violation Eh4:r4¬B4 ∧
Oh4:r4B4).

From Eh4:r4¬B4 and Eh4:r4¬B4 → Es1:r¬A3 we can infer Es1:r¬A3.
As we have (s1 : r) : REP (h2 : r3, ∗) and Es1:r¬A3, we can infer Eh2:r3¬A3.
From Or3A3 ∧ qual(h2 : r3) we can infer Oh2:r3A3, and we detect another

violation Eh2:r3¬A3 ∧Oh2:r3A3.
As we have .r3 : REP (i : itself,A3) and Eh2:r3¬A3, we can infer Ei:itself¬A3

and detect yet another violation (Ei:itself¬A3 ∧Oi:itselfA3).

Case 3: The ticket machine (s2) has no change and tells the users to use the
exact amount of money (B2). h5 wants to buy a ticket but uses an amount of
money superior than the ticket price (¬A6), misusing s2. This causes s2 not to
collect the appropriate ticket price (¬A2), because it has no change.

Δ = {Es2:r2B2,Eh5:r7¬A6, (Eh5:r7¬A6 → Es2:r2¬A2),Oi:itselfA2}
ψ = (Es2:r2B2∧Os2:r2B2)∧ (Eh5:r7¬A6∧Oh5:r7A6)∧ (Es2:r2¬A2∧Os2:r2A2)∧
(Ei:itself¬A2 ∧Oi:itselfA2)

From Cont4(s2, i) we have qual(s2, r2) and (s2 : r2) : REP (i : itself, ∗). From
qual(s2, r2) and Or2B2 we infer Os2:r2B2, and detect a fulfillment of an obliga-
tion Es2:r2B2 ∧Os2:r2B2.

From Cont8(h5, i) we have Oh5:r7A6. Thus we detect a violation Eh5:r7¬A6∧
Oh5:r7A6.

From Eh5:r7¬A6 and Eh5:r7¬A6 → Es2:r2¬A2 we infer Es2:r2¬A2.
From qual(s2, r2) and Or2A2 we infer Os2:r2A2, and detect a violation of an

obligation Es2:r2¬A2 ∧Os2:r2A2.
As we have Es2:r2¬A2 and (s2 : r2) : REP (i : itself, ∗) we infer Ei:itself¬A2,

and we detect another violation Ei:itself¬A2 ∧Oi:itselfA2.

5 Conclusions and Future Work

In this paper we proposed a model for the normative specification of organiza-
tional systems (human or virtual) based on the concept of role and on the legal
concepts of artificial person and contract. In that model we explicitly describe
the norms that regulate the systems and their components, stating how they
should behave, assuming however that they may deviate from what is expected
of them. The proposed model is supported by a multi-modal action and deontic
logic. With that logical framework we can describe expected behavior of agents,

Normative Specification: A Tool for Trust and Security 201

verify if agents actions in a role are valid, if they correspond to the fulfillment of
obligations or, on the contrary, if they correspond to a violation of some obliga-
tion. When non-ideal situations, like the latter, occur, it is possible to identify
the agents that, directly or indirectly, are responsible for them.

We argued that the integration of computer systems in organizational struc-
ture helps to clarify what is expected of software/hardware components, and
helps to identify who will be responsible for failure.

We also defended that the use of the model proposed can be useful in the for-
malization of virtual organizations, or in other virtual environments. The security
issues that lead to this kind of models are also present in virtual contexts. Adopt-
ing them may contribute to increase trust in the interactions between agents.

These models are suited to high-level specification and may be useful to a
first level of specification of systems, giving a normative view of them.

There are many open problems in this approach. The notion of trust pre-
sented is very specific and needs further research. We have to refine this high-
level model relating states of affairs with actions (possibly using event calculus,
following the work of M. Sergot). We also have to detail contracts and norms,
possibly including contrary-to-duties(c.f. the work of A.Jones and J. Carmo)
and/or using defeasible logic (c.f. the work of G. Governatori, A. Rotolo and
G. Sartor). Another research direction is to use the different kinds of action
(direct action, indirect action, attempted action) proposed by F. Santos, A.
Jones and J. Carmo, to distinguish different levels of responsibility. We are also
addressing issues related with the dynamics of this logics, and with their au-
tomation. Those issues are crucial to make this approach interesting to model
real cases.

References

1. Belnap, N. and Perloff, M.: “Seeing To It That: A Canonical Form for Agentives”,
Theoria, 54, 1989, 175–199.

2. Bertino, E. and Ferrari, E. and Atluri, V.: “A Flexible Model for the Spec-
ification and Enforcement of Authorizations in Workflow Management Sys-
tems”,Proceedings of 2nd ACM Workshop on Role Based Access Control, 1997,
1–12.

3. Carmo, J. and Jones, A.:“Deontic Logic and Contrary-to-Duties”. D. Gabbay and
F. Guenthner (eds.) Handbook of Philosophical Logic, volume 8, 265–343, Kluwer
Academic Publishers, 2nd edition, 2002.

4. Carmo, J and Pacheco, O.: “Deontic and action logics for organized collective
agency, modeled through institutionalized agents and roles”, Fundamenta Infor-
maticae, Vol.48 (No. 2,3), pp. 129-163, IOS Press, November, 2001, .

5. B. J. Chellas: Modal Logic - an Introduction, Cambridge University Press, 1980.
6. Cuppens, F.: “Roles and Deontic Logic”.A.J.I. Jones and M. Sergot

(eds.),Proceedings of Second International Workshop on Deontic Logic in Com-
puter Science (DEON’94), Complex 1/94 NRCCL, Oslo, 1994, 86–106.

7. Elgesem, D.: Action Theory and Modal Logic, PhD thesis, Department of Philoso-
phy, University of Oslo, 1993.

202 O. Pacheco

8. G. Governatori, J. Gelati, A. Rotolo and G. Sartor: “Actions, Institutions, Pow-
ers. Preliminary Notes”, International Workshop on Regulated Agent-Based Social
Systems (RASTA’02), Fachbereich Informatik, Universität Hamburg, pp. 131-147,
2002.

9. R. Hilpinen (ed.), Deontic Logic: Introductory and Sistematic Readings,Dordrecht:
D.Reidel, 1971.

10. A. J. I. Jones and M. J. Sergot: “A Formal Characterization of Institutionalized
Power”, Journal of the IGPL , 4(3), pp.429-445, 1996. Reprinted in E. Garzón
Valdés, W. Krawietz, G. H. von Wright and R. Zimmerling (eds.), Normative Sys-
tems in Legal and Moral Theory, (Festschrift for Carlos E. Alchourrón and Eugenio
Bulygin), Berlin: Duncker & Humblot, pp.349-369, 1997.

11. S. Kanger: “Law and Logic”, Theoria, 38, 1972.
12. L. Lindahl: Position and Change - A Study in Law and Logic, Synthese Library

112, Dordrecht:D. Reidel, 1977.
13. Massacci, F.: “Reasoning about Security: a Logic and a Decision Method for Role-

Based Access Control”. D. Gabbay et al. (eds.), Proc. of the Int. Joint Conference
on Qualitative and Quantitative Practical Reasoning, LNAI, 1244, Springer Verlag,
1997, 421–435.

14. Meyer, J.-J. Ch. and Wieringa, R. J.: “Deontic Logic: A Concise Overview”.
J.-J.CH. Meyer and R.J. Wieringa (eds), Deontic Logic in Computer Science: Nor-
mative System Specification, John Wiley & Sons, 1993, 3–16.

15. Minsky, N., Ungureanu, V.: “Law-Governed Interaction: A Coordination and Con-
trol Mechanism for Heterogeneous Distributed Systems”. in ACM Transactions on
Software Engineering and Methodology (TOSEM), (Vol 9, No 3, pages: 273-305)
July 2000.

16. O. Pacheco and J. Carmo: “Collective Agents: from Law to AI”, Proceedings of
2nd French-American Conference on Law and Artificial Intelligence, Nice, 1998.

17. O. Pacheco and J. Carmo: “ A Role Based Model for the Normative Specification
of Organized Collective Agency and Agents Interaction”, Journal of Autonomous
Agents and Multi-Agent Systems, Vol. 6, Issue 2, pp.145-184, Kluwer, March 2003.

18. I. Pörn: Action Theory and Social Science: Some Formal Models, Synthese Library,
120, Dordrecht : D. Reidel, 1977.

19. Santos, F. and Jones, A.J.I. and Carmo, J.: “Responsibility for Action in Orga-
nizations: a Formal Model”. G. Holmstrom-Hintikka and R. Tuomela (eds.), Con-
temporary Action Theory, II (Social Action), Synthese Library, 267, Kluwer, 1997,
333–350.

20. Santos, F. and Carmo, J.: “ Indirect Action, Influence and Responsibility”, in
M. Brown and J.Carmo (eds.), Deontic Logic, Agency and Normative Systems,
Springer, Workshops in Computing Series, 194-215, 1996.

21. Sergot, M.:”Modelling unreliable and untrustworthy agent behavior”. In
Proc.Workshop on Monitoring, Security and Rescue Techniques in Multiagent Sys-
tems (MSRAS’04), Poland, Advances in Soft Computing. Springer-Verlag, 2004.

22. Skarmeas, N.:“Modeling Organizations using Roles and Agents”, Proceedings of 5h
Hellenic Conference on Informatics, Athens, 1995.

Type-Based Distributed Access Control
vs. Untyped Attackers

Tom Chothia1 and Dominic Duggan2

1 Laboratoire d’Informatique (LIX), École Polytechnique (CNRS),
91128 Palaiseau Cedex, France

tomc@lix.polytechnique.fr
2 Department of Computer Science, Stevens Institute of Technology,

Hoboken, NJ 07030, USA
dduggan@cs.stevens-tech.edu

Abstract. This paper considers what happens when a system erroneously places
trust in an attacker. More precisely we consider untyped attackers inside a dis-
tributed system in which security is enforced by the type system. Our Key-Based
Decentralised Label Model for distributed access control combines a weak form
of information flow control with cryptographic type casts. We extend our model
to allow inside attackers by using three sets of type rules. The first set is for
honest principals. The second set is for attackers; these rules require that only
communication channels can be used to communicate and express our correct-
ness conditions. The third set of type rules are used to type processes that have
become corrupted by the attackers. We show that the untyped attackers can leak
their own data and disrupt the communication of any principals that place direct
trust in an attacker, but no matter what the attackers try, they cannot obtain data
that does not include at least one attacker in its access control policy.

1 Introduction

Type systems can provide a lightweight method to ensure security properties of a given
piece of code. Once checked, the program can be run, with few restrictions, in the
knowledge that the guarantees of the type system will still hold. These guarantees can
be extended to distributed processes communicating across an untrusted network, as
long as each trusted process is well-typed. This paper addresses the question of what
happens when a number of these “trusted” processes ignore the security types with the
aim of acquiring sensitive data and disrupting other principals.

In previous work [CDV03], we introduce the Key-Based Decentralised Label Model
(KDLM) for distributed access control. It combines a weak form of information flow
control with typed cryptographic operations. The motivation is to have a type system
that ensures access control while giving the application the responsibility to secure net-
work communications, and to do this safely. This removes the need to force the user
into a “one size fits all” security solution, which would have to be implemented in the
trusted computing base. The original system included primitives for the declassification
and packaging of data, including these in our system would obstruct the explanation of
our method for dealing with untyped attackers. So, we show how safety in the face of
untyped attackers can be proved for a cut-down version of our previous system, which

T. Dimitrakos et al. (Eds.): FAST 2005, LNCS 3866, pp. 203–216, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

204 T. Chothia and D. Duggan

we refer to as mini-KDLM. This calculus is simple enough to illustrate the ideas of our
system, while still capturing the salient features of KDLM.

We show that the untyped attackers can leak their own data and disrupt the commu-
nication of any other principals that place direct trust in an attacker. However, no matter
what the attackers try, they cannot obtain data that does not include an attacker in its ac-
cess control policy. We achieve this result by using a type system with three sets of type
rules. The first set allows principals to be well-typed in the KDLM style. Attackers have
their own type rules that allow them to ignore the access control types. That attackers
have type rules at all is down to the need to maintain the separation between base types
and channel types (pretending that an integer has a channel type won’t make it into
a communication channel). The final set of type rules allow for names that have been
misplaced in honest principals; we refer to processes that have been interfered with in
this way as corrupt. These rules allow for one name to take the place of another name,
with a different type, as long as both names originally included at least one attacker in
their access control policy.

Our rules for attackers and corrupt processes require data not to be misplaced, unless
it includes an attacker in its access control policy. So, we show the correctness of our
system by showing that well-typed systems always reduce to well-typed systems. To
assist us, we first prove a lemma: in a well-typed system, we may substitute one type for
another and the system will remain well-typed as long as both types originally included
an attacker in their access control policy. We prove this lemma by showing that we can
use the type rules for corrupt processes to type any sub-processes affected by the type
change.

The contributions of this work are:

– The simplified, distributed, access control system mini-KDLM
– A model of untyped attackers and a correctness proof for systems under attack in

mini-KDLM.
– Showing how distributed, untyped attackers can be dealt with using a different set of

type rules for honest principals, attackers and principals corrupted by the attackers.

In Section 2, we review the KDLM type system for distributed access control and in-
troduce the simplified version, mini-KDLM. Next, in Section 3 we introduce the model
of untyped attackers. In Section 4, we show how type rules can be used to characterize
principals that have been corrupted by an attacker. Section 5 proves the correctness of
our system by way of a subject reduction result. Section 6 discusses related work and
finally, Section 7 concludes and briefly discusses further work.

2 Mini-KDLM

The Decentralized Label Model (DLM) [ML97] is a model of information flow control
that was introduced by Myers and Liskov. This model avoids one undesirable aspect
of classical information flow control - the need for some centrally defined lattice of
information levels - by implicitly defining a lattice based on access control.

More recently we combined ideas from DLM and cryptographic APIs [Dug03] to
make the Key-based Decentralized Label Model (KDLM). This system provides

Type-Based Distributed Access Control vs. Untyped Attackers 205

v ∈ Value ::= w, x, y, z Variable | a, b, c, n Channel name

| k+, k− Key names | {v}k Encrypted value

P ∈ Principals ::= P, P1, P2...

LT ∈ Labelled Types ::= LT, T L

R ∈ Process ::= stop Stopped process

| receive v?x; R Message receive

| !R replication

| send v1!v2 Message send

| new(a : LT); R New channel

| newkey (k+ : Enc(�P)L1 ,

k− : Dec(�P)L2); R New Keys

| (R1 | R2) Parallel composition

| encrypt {v1}v2 as x; R Encryption

| decrypt v1 as {x}v2 ; R Decryption

N ∈ Network ::= empty Empty network

| P [R] Principal

| new(a : LT); N Channel binding

| (N1 | N2) Wire

Fig. 1. Syntax of mini-KDLM

distributed access control and forms the basis for mini-KDLM. The argument for our
approach is the usual end-to-end argument in system design: it is ultimately unrealis-
tic to expect there to be a single “one size fits all” solution to network security in the
runtime. The application must be able to build its own network security stack for any
approach to scale, so the type system prevents the application from violating the access
control policy while leaving it free to establish network security however it sees fit.

The syntax of mini-KDLM is given in Figure 1. Most of this is similar to the spi-
calculus [AG99]. The new term P [R] is the process R running under the control of
the principal P . It should be noted that this does not represent a location. It is possible
to have two threads running for different principals on the same computer, just as it is
possible for processes running for the same principal to run in two different places. We
reduce and type each process running for a principal on its own, using the structural
equivalence rule:

P [R1 | R2] ≡ P [R1] | P [R2]

The calculus is monadic, meaning that channels only pass a single name at a time.
We could extend the calculus to pass multiple channels at a time by repeating the type
checks for each name passed, or by packaging up a number of names into a single

206 T. Chothia and D. Duggan

P1[send a!b] | P2[receive a?x; R] → P2[R[b/x]]

P [encrypt {v}k+ as x; R] → P [R[{v}k/x]]

P [decrypt {v}k as {x}k− ; R] → P [R[v/x]]

N1 → N ′
1

N1 | N2 → N ′
1 | N2

N → N ′

new (a : LT); N → new (a : LT); N ′

R ≡ R1 R1 → R′
1 R′

1 ≡ R′

R → R′

Fig. 2. The Semantics

!R ≡ R | !R stop | R ≡ R
R1 | R2 ≡ R2 | R1 R1 | (R2 | R3) ≡ (R1 | R2) | R3

new(a : LT); R ≡ R a /∈ fn(R) P [R1 | R2] ≡ P [R1] | P [R2]
(new(a : LT); R1) | R2 ≡ new(a : LT); (R1 | R2) a /∈ fn(R2)

new(a1 : LT1); new(a2 : LT2); R ≡ new(a2 : LT2); new(a1 : LT1); R

plus the equivalent rules for Networks and newkey.

Fig. 3. Equivalence Rules

object and placing a policy on the object that is at least as restrictive as the policies on
the names it contains.

The semantics of this calculus is given in Figure 2. This too is similar to the spi-
calculus, in particular encrypting a name a with a key k results in the term {a}k. This
term cannot be identified as a, and cannot be used to communicate. The decrypt op-
eration pattern matches the key name and will decrypt the data if the correct key is
provided, otherwise it will halt. The new construct generates a new and unique name.
The structural equivalence rules allow the scope of a new name to be expanded, as long
as it does not capture any other names, using the rule:

(new(a : LT);R) | R′ ≡ new(a : LT); (R | R′) if a /∈ fn(Q)

where fn(R′) are the names in R′ that do not appear under a binder. The communica-
tion rule cannot be applied across a new name construct hence new and “old” names
represented by the same symbol cannot communicate. The other structural equivalence
rules are given in Figure 3.

Type-Based Distributed Access Control vs. Untyped Attackers 207

T ∈ Types ::= Chan(LT) Channel Type

| 〈〉 Null Type

| Enc(�P) | Dec(�P) Key Type

L ∈ Label ::= �P | Public Access Control Policy

LT ∈ Labelled type ::= TL Protected Data

Fig. 4. Syntax of Sensitivity Types

Γ N1 Γ N2

Γ (N1 | N2)

Γ ∪ {(a : LT)} N

Γ new(a : LT)N

Γ P [R1] Γ P [R2]

Γ P [(R1 | R2)]

Γ ∪ {(a : TL)} P [R] P ∈ L T L

Γ P [new(a : TL); R]

Γ v : Chan(TL)L0 P ∈ L0 Γ ∪ {(x : TL)} P [R]

Γ P [receive v?x; R]

Γ v0 : Chan(TL)L0 Γ v : TL P ∈ L0

Γ P [send v0!v]

 Enc(�P)L1 Dec(�P)L2 P ∈ L1 ∩ L2

Γ ∪ {k+ : Enc(�P)L1 , k− : Dec(�P)L2} P [R]

Γ P [newkey (k+ : Enc(�P)L1 , k− : Dec(�P)L2); R]

Γ v0 : T L Γ v : Enc(L)Lk Γ ∪ {x : T Public} P [R] P ∈ Lk

Γ P [encrypt {v0}v as x; R]

Γ v0 : T Public Γ v : Dec(Lp)Lk Γ ∪ {x : T Lp} P [R] P ∈ Lk

Γ P [decrypt v0 as {x}v; R]

Fig. 5. Types for Networks

The access controls are enforced using the type system given in Figure 4 (syntax),
Figure 5 (type rules) and Figure 6 (well-formed types). We do not enumerate the base
types here, but they could include types such as int for integers, and string for strings.
The channel type Chan(LT) is the type of the communication channel that carries a
value of type LT . A protected type adds a policy label to a channel or base type, for

208 T. Chothia and D. Duggan

v0 : T L ∈ Γ v : Enc(L)Lk ∈ Γ T L Enc(L)Lk

Γ {v0}v : T Public

Γ k− : Dec(�P)L′
k+ : Enc(�P)L ∈ Γ Enc(�P)L

Γ k+ : Enc(�P)L

Γ k+ : Enc(�P)L′
k− : Dec(�P)L ∈ Γ Dec(�P)L

Γ k− : Dec(�P)L

v : T L ∈ Γ T L

Γ v : T L

 T L L0 ⊆ L

 Chan(T L)L0

L ⊆ �P

 Dec(�P)L

L ⊆ �P

 Enc(�P)L

Fig. 6. Well-Formed Types and Names

instance int{Alice,Bob} is an integer that can only be used by the principals Alice and
Bob. The aim of this type system is to ensure that names only ever reach principals that
are mentioned in their policy, i.e., given a network which includes the sub-term P [R],
all names that occur in the process R must name the principal P in their policy.

In this section we direct the reader’s attention to the basic calculus; we discuss en-
cryption in the next section. We restrict the types given to names in Figure 6 and we
restrict how a process can use those names in Figure 5. Our type judgement on networks
takes the form Γ � P [R] where Γ is a set of type bindings. The judgement on names
Γ � a : LT means that a has type LT in Γ and LT is a well-formed type.

There are two fundamental restrictions imposed by the type system, the first is on
channel types and the second is on the send action. Channels are required to have a
policy that is more restrictive than the policy of the data they carry. This is enforced by
the following rule from Figure 6.

� TL L0 ⊆ L

� Chan(TL)L0

Here L0 is the set of principals that can access a channel of this type and L is the set of
principals that should be able to access the data sent across this channel. As a principal
must possess a channel in order to be able to receive on it, the restriction L0 ⊆ Lmeans
that any restricted data can be sent over a correctly typed channel in the knowledge that
any principal that can receive the data should be allowed to do so. The condition on the
data type (� TL) ensures that this type is well-formed.

The type check on the send action, from Figure 5, ensures that only data of the
correct type is sent over a channel, i.e., the type of v matches the type that should be
carried by v0.

Γ � v0 : Chan(TL)L0 Γ � v : TL P ∈ L0

Γ � P [send v0!v]

Type-Based Distributed Access Control vs. Untyped Attackers 209

As with the other type rules, this rule also checks that the types are well-formed and
that all of the names can be used by the current principal. In the case of the send rule
we know that, as v0 has a well-formed type, L0 ⊆ L and hence the condition P ∈ L0
implies that P is in the access control types for both v and v0.

2.1 Encryption and Types

The type system described so far is very restrictive. More over, it may not always be
possible to have a secure channel between any two principals. To make this system
more flexible we use encryption as a form of type downcasting. This allows us to send
sensitive data over an insecure channel, in a way that is both secure and type safe.

We associate access control lists with cryptographic keys. Keys have the type
Enc(�P)L or Dec(�P)L to represent an encryption or decryption key that enforces the
policy �P on data. These key types are in turn protected by a policy, in this case L.
The type system ensures that encryption and decryption keys enforce the same pol-
icy and that the access control policy on the key is more restrictive than the policy it
enforces.

When a piece of data needs to be sent over an insecure channel it is encrypted with
a key that represents the list of principals that can access that data. Once encrypted, the
type rules remove the access control policy from the data by setting it to Public. All
principals can access public data so the test P ∈ Public is true for any P . When public,
encrypted data is decrypted the access control policy enforced by the decryption key is
placed on the decrypted data.

We illustrate the process of sending data in Figure 7. In this picture, Alice wishes
to send Bob some data, which is restricted to just the two of them. Lacking a secure
channel she encrypts the data with a key that enforces the same policy as the one on the
data, a type check ensures that these policies match. The encrypted data does not have
any type restrictions and so can be sent to Bob over a public channel. Upon receiving
the data, Bob decrypts it and replaces the access restrictions. Hence, as long as the key
is restricted to just Alice and Bob, the data has safely passed from one principal to
another and has arrived with the same type as it started with.

The type rule for encryption is given in Figure 5. This rule ensures that the right key
is used to encrypt controlled data.

Γ � v0 : TL Γ � v : Enc(L)Lk Γ ∪ {x : TPublic} � P [R] P ∈ Lk

Γ � P [encrypt {v0}v as x;R]

We note that the policy on the data being encrypted (L) must match the policy that
is enforced by the key. Once the name is encrypted the access control restrictions are
removed, this is indicated by the Public label on the encrypted data. The condition that
requires the current principal to be included in the policy of the key (P ∈ Lk) and the
well-formedness condition on the key type imply that well-typed principals will only
try to encrypt data that they are allowed to use i.e., that P ∈ L.

The matching decryption rule takes a name, without any access restrictions, and tries
to decrypt it. If the incorrect key is used the process halts. If the correct key is provided
we decrypt the data and give it the access control policy that is enforced by the key. As

210 T. Chothia and D. Duggan

Fig. 7. Sending Data Through an Untrusted Area

the decryption and encryption part of a key must enforce the same policy, we know that
the decrypted name has the same type as it had before it was encrypted.

Keys are restricted to a subset of the principals named in the access control policy
they enforce, as seen in Figure 6. The well-formedness conditions on the key types
also ensure that the encryption and decryption types for the same key enforce the same
policy and that any encrypted terms in the initial network are also well-formed.

As an example, consider a system with two principals, a PDA and a Base com-
puter. If the PDA uses data packets of type data, then a packet that was restricted to just
the PDA and the owners base computer would have the type data{PDA,Base}, whereas
public data would have the type dataPublic .

Imagine that the PDA has a cable that connects it to the base computer and a wireless
connection. The socket for the cable connection on the PDA will securely connect the
PDA and base computer, so it would have a type indicating that it is safe for restricted
data, Cable Socket : Chan(data{PDA,Base}){PDA}. The PDA label on the socket
indicates that the socket connection cannot be sent to another location. Data sent over
the wireless connection, on the other hand, could easily be intercepted. It would be
possible to use a secure transport layer to protect the data sent over this connection
but this might be too great a burden for a the limited CPU and battery power of the
PDA, or we might just want to keep the PDA software as simple as possible. So, we
give the socket a type indicating that it is not safe for private data, Wireless Socket :
Chan(dataPublic){PDA}.

When the PDA software is compiled we will get a type error it the program might
try to send any controlled data over the wireless connection without encrypting it. Once
checked, the lightweight PDA program can run without any restrictions and without a
cumbersome security transport layer.

Type-Based Distributed Access Control vs. Untyped Attackers 211

3 Untyped Attackers

The aim of this paper is the correct integration of untyped attackers into our model.
If an attacker is mentioned in the access control policy of a name it can acquire that
name and send it on to anywhere it sees fit. So an untyped attacker can always leak
some restricted data, but we can show that this abuse of trust is not transitive. If Alice
restricts her data to just herself and to Bob, and excludes Eve, who does not respect the
access control types, then the data should be safe from Eve, even if Bob trusts her with
other data and channels.

We include attackers into our type system by adding two new sets of type rules and
a new form of type judgement. We write Γ �A N to mean that the network N is well-
typed given the fact that A is a set of principals that can perform attacks by ignoring
access control types. Processes can now be typed with the original “honest” type rules,
or by a set of type rules for attackers, or by another set of type rules for processes that
have been corrupted by misinformation from an attacker.

The type rules that the attackers must conform to are given in Figure 8. It may seem
odd to have type rules for untyped attackers, however these rules place no restrictions on
access control types. So, more accurately these are un-access-control-typed attackers.
The type rules do force attackers to respect the basic nature of names. For instance, as

Γ A N1 Γ A N2

Γ A (N1 | N2)

Γ ∪ {(a : LT)} A N

Γ A new(a : LT)N

Γ A P [R1] Γ A P [R2]

Γ A P [(R1 | R2)]

Γ ∪ {(a : TL)} A P [R] P ∈ L A T L

Γ A P [new(a : TL); R]

Γ v : Chan(TL)L0 P ∈ A L0 ∩A != {} Γ ∪ {x : T L} A P [R]

Γ A P [receive v?x; R]

Γ v0 : Chan(T L1
1)L0 Γ v : T L2

2 "T1# = "T2#
P ∈ A L0 ∩A != {} != L2 ∩A

Γ A P [send v0!v]

Γ v0 : T L Γ v : Enc(Lp)Lv Γ ∪ {x : T Public} A P [R]
Lp ∩A != {} L ∩A != {} P ∈ A

Γ A P [encrypt {v0}v as x; R]

Γ v0 : T Public Γ v : Dec(Lp)Lk Γ ∪ {x : T L
p } A P [R]

Lk ∩A != {} P ∈ A

Γ A P [decrypt v0 as {x}v; R]

Fig. 8. Types for Attackers

212 T. Chothia and D. Duggan

communication channels must be supported by some kind of infrastructure, the attacker
cannot turn an integer into a communication channel just by changing its type. We
characterise the types the attacker can interchange by defining an erasure relation.

)Chan(LT)L* = Chan()LT*)Public)〈〉L* = 〈〉Public

)Enc(�P)L* = Enc(�P)Public)Dec(�P)L* = Dec(�P)Public

As long as the attackers only substitute names with the same erasure type, they can
do what they like. In particular, the type of a name being sent over a channel does not
have to match the type that should be carried by that channel. Also the policy enforced
by the encryption key used to encode a name does not have to match the policy on that
name. We cater for corruptly encrypted terms using the following additional type rule.

v0 : TL ∈ Γ v : Enc(Lp)Lk ∈ Γ �A TL �A Enc(Lp)Lk

Lp ∩A = {} = L ∩A
Γ �A {v0}v : TPublic

The attackers create “correct” types, this is because we do not consider attackers
obtaining values created by other attackers as a security leak and if these names are
passed to a genuine process then the real type of the name will not matter. The type rules
also check that at least one attacker is named in each rule used. This is a correctness
criterion that, in effect, states that the attackers have not been able to acquire any names
that did not explicitly give access to an attacker. We show later that this correctness
criterion is preserved by reduction.

4 Corrupted Principals

While the attackers cannot acquire sensitive data, they can cause their data to be mis-
placed. Hence, if you trust an untyped attacker you run the risk of becoming corrupted.
We formalise this with the rules in Figure 9.

Γ v : Chan(TL)L0 Γ ∪ {(x : TL)} A P [R] A ∩ L0 != {}
Γ A P [receive v?x; R]

Γ v0 : Chan(TL1
1)L0 Γ A v : T L2

2 "T1# = "T2#
L2 ∩A != {} != L1 ∩A if L0 ∩A = {} then P ∈ L0

Γ A P [send v0!v]

Γ v0 : T L Γ v : Enc(Lp)Lk Γ ∪ {x : T Public} A P [R]
A ∩ L != {} != Lp ∩A if A ∩ Lk = {} then P ∈ Lk

Γ A P [encrypt {v0}v as x; R]

Γ v0 : T Public Γ v : Dec(Lp)Lk Γ ∪ {x : T Lp} A P [R] A ∩ Lk != {}
Γ A P [decrypt v0 as {x}v; R]

Fig. 9. Types for the Corrupt

Type-Based Distributed Access Control vs. Untyped Attackers 213

We note that rather than having three separate sets of type rules, it would have been
possible to have a single, complicated type rule for each piece of syntax. These rules
would coalesce the conditions from each of the three type rules. For the sake of the
reader’s comfort, and our sanity, we decided to keep the rules simple.

The send rule may be corrupt in three ways: an attacker might have messed around
with the communication channel that is being used to send the data, or the data that is
being sent, or both. As the channel must have a well-formed type it is possible for an
attacker to have access to the data being sent over the channel but not have access to the
channel itself. This means that, if the send action is corrupt in any way, it must include
an attacker in the payload type. We use an “if” statement to see if the communication
channel may also be corrupt; if it cannot be, it must be in the right place, i.e., have
the current principal in its policy. If an attacker has corrupted the data so the type of
the channel’s payload does not match the type of the name being sent then both must
contain the name of an attacker.

In a similar way, if the attacker is named in any part of an encryption action it must
be named in the policy enforced by the key and in the policy of the name being encoded.
If an attacker is not named in the access control policy for the key then the attacker can-
not interfere with the key and so the current principal must be mentioned. Of course,
as the process has been corrupted, the policy enforced by the key does not have to
match the policy on the data being encrypted.

5 Correctness

Our type system does not allow the attackers to possess data they are not supposed to
have. For this reason, a well-typed system is one in which a leak has not yet occurred,
as shown by the following lemma.

Lemma 1. A well-typed network is correct, only names that explicitly allow access to
an attacker appear outside their designated area:

If Γ �A P [R] and R = C[send v1!v2] or R = C[receive v1?x;R′] or R =
C[encrypt {v1}v2 as x;R′] orR = C[decrypt v1 as {x}v2 ;R′] and Γ ′ � v1 : TL1

1 , v2 :
T2

L2 , where Γ ′ is Γ extended with the types defined byC[] thenP ∈ L1 orA∩L1 = {}
and P ∈ L2 or A ∩ L2 = {}.

Proof. By induction on the syntax of R. We inspect the type rules for each piece of
syntax, observe that the conditions are fulfilled and apply the induction hypothesis to
type the remaining process.

The core of our correctness result takes the form of a subject reduction proof; we show
that well-typed systems reduce to well-typed systems. The type system allows any given
piece of syntax to be typed as an honest process, or an attacker, or a corrupted process.
This leads to multiple cases to check when assuming a process is well-typed. A more
interesting issue is that one type might have been used to type a name in a given process
and then a name of a different type could be substituted into its place. This will happen
when an attacker sends a wrongly typed name over a channel to an honest process.
In which case the honest process will become corrupt and we will have to type the
resulting process with the type rules for corrupt processes.

214 T. Chothia and D. Duggan

We use the following lemma to show that the substitution of one type for another
is allowed by the type rules for corrupt processes, as long as there is an attacker in the
policy of both names.

Lemma 2. If Γ ∪ {x : TL1
1 } �A P [R] then for all � TL2

2 such that)T1* =)T2* and
A ∩ L1 = {} and A ∩ L2 = {} we have that Γ ∪ {x : TL2

2 } �A P [R].

Proof. By induction on the syntax of R. We give the receive case as an example.

– R ≡ receive x?y; R′

By the assumption that P [R] is well-typed, with the original type for x, we know
that there exists T3 and L3 such that T1 = Chan(TL3

3) and that Γ ∪ {x : TL1
1 , y :

TL3
3 } �A P [R′]. As)T1* =)T2* we know that T2 = Chan(TL4

4) for some T4
such that)T3* =)T4*. By the well-formedness condition for channel types we
know that L1 ⊆ L3 and L2 ⊆ L4 hence A ∩ L3 = {} and A ∩ L4 = {}. So, we
can apply the induction hypothesis to show that Γ ∪ {x : TL2

2 , y : TL4
4 } �A P [R′].

Noting thatA∩L2 = {} allows us to type P [R] by the receive type rule for corrupt
processes.

This lemma has proven the heart of our correctness result, however it remains to show
that types only ever get mixed up when they include an attacker in their access control
policy. We do this in our main theorem.

Theorem 1 (Subject Reduction). If Γ �A N and N → N ′ then Γ �A N ′.

Proof. By induction on the reduction N → N ′, for each reduction rule we consider
each possible typing rule that could have been applied to typeN . We then show that we
can type N ′, using Lemma 2 whenever the process becomes corrupted.

And finally, we restate this result as “correctness”:

Corollary 1. Given a well-typed honest network Γ � N , for any set of attackers A and
any network NA such that Γ �A NA the network N | NA cannot reduce to a state in
which an attacker has a name that does not include an attacker in its access control
policy.

Proof. By Lemma 1 and Theorem 1.

6 Related Work

Mini-KDLM is designed to be simple enough to illustrate our correctness proof while
still producing results that are relevant to full KDLM [CDV03]. So, naturally mini-
KDLM is a cut down version of full KDLM. Both have policy types on data and keys
that enforce policies, but full KDLM uses an abstraction of key names to represent
policies, this allows for accountable declassification. In mini-KDLM we restrict both
encryption and decryption keys, full KDLM splits the access control types into policies
for security and authentication, meaning that encryption and signing keys can be made

Type-Based Distributed Access Control vs. Untyped Attackers 215

public. In other work we show how key names can be distributed and sketch how KDLM
could be implemented as a type system for Java [CDV04].

Our work is partly inspired by the Distributed Label Model [ML97] this model
was implemented as the language JFlow [Mye99]. The Jif/Split compiler [ZZNM02,
ZCZM03] allows a program to be annotated with trust information, the code is then
split into a number of programs that can be run on different hosts. The partitioning pre-
serves the original semantics of the program and ensures that hosts that are not trusted
to access certain data cannot receive that data. Hennessy and Riely [HR99, RH99], have
developed a type system that controls attackers in the Dpi-calculus. They allow attack-
ers to ignore the type rules, as we do here, but they use dynamic type checks to ensure
that honest principals do not become corrupted.

Much of the work on wide-area languages has focused on security, for example
providing abstractions of secure channels [AFG00, AFG99], controlling key distribu-
tion [CV99, CGG00], reasoning about security protocols [AG99, Aba97], etc. Abadi
[Aba97] considers a type system for ensuring that secrecy is preserved in security pro-
tocols. Other work on security in programming languages has focused on ensuring and
preventing unwanted security flows in programs [DD77, VS97, PC00]. Sabelfeld and
Myers [SM02] provide an excellent overview of this work.

7 Conclusion and Further Work

We have extended the Key-Based Decentralised Label Model for access control to in-
clude inside, trusted attackers and proved that these attackers can cause only limited
damage. The model works by having three sets of type rules: the first for honest pro-
cesses, the second for attackers and the third for processes that have been corrupted by
an attacker. The type rules also contain checks that ensure no data, which is not desig-
nated as accessible to an attacker, leaks outside its area. We prove the correctness of our
system by showing subject reduction.

It may be interesting to introduce a sub-typing relation for labelled types. For in-
stance, allowing data to be sent over channels that should carry a more restrictive data
type, and effectively up grading the data’s security restrictions. Modelling corrupted
types as sub-types of the honest types may allow us to reduce the total number of type
rules. However, this does not catch the different possible behaviours of honest partici-
pants and attackers and it may make the extension of the system more cumbersome.

We hope that this work will be a base from which to prove that an implementation of
key-based decentralised access control in Java is safe from untyped attackers. We also
hope that this method can be applied to other type systems for distributed security.

References

[Aba97] Martin Abadi. Secrecy by typing in security protocols. In Theoretical Aspects of
Computer Science, pages 611–638, 1997.

[AFG99] Martin Abadi, Cedric Fournet, and Georges Gonthier. Secure communications pro-
cessing for distributed languages. In IEEE Symposium on Security and Privacy,
1999.

216 T. Chothia and D. Duggan

[AFG00] Martin Abadi, Cedric Fournet, and Georges Gonthier. Authentication primitives
and their compilation. In Proceedings of ACM Symposium on Principles of Pro-
gramming Languages, 2000.

[AG99] Martin Abadi and Andrew Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148(1):1–70, January 1999.

[CDV03] Tom Chothia, Dominic Duggan, and Jan Vitek. Type-based distributed access con-
trol. In Computer Security Foundations Workshop, Asilomar, California, June 2003.
IEEE.

[CDV04] Tom Chothia, Dominic Duggan, and Jan Vitek. Principals, policies and keys in a
secure distributed programming language. In Foundations of Computer Security,
2004.

[CGG00] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Secrecy and group creation.
In Concurrency Theory (CONCUR). Springer-Verlag, 2000.

[CV99] Guiseppe Castagna and Jan Vitek. A calculus of secure mobile computations. In
Internet Programming Languages, Lecture Notes in Computer Science. Springer-
Verlag, 1999.

[DD77] D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Communications of the ACM, 1977.

[Dug03] Dominic Duggan. Type-based cryptographic operations. Journal of Computer
Security, 2003.

[HR99] Matthew Hennessy and James Riely. Type-safe execution of mobile agents in
anonymous networks. In Secure Internet Programming: Security Issues for Dis-
tributed and Mobile Objects, Lecture Notes in Computer Science. Springer-Verlag,
1999.

[ML97] Andrew C. Myers and Barbara Liskov. A decentralized model for information flow
control. In Symposium on Operating Systems Principles, 1997.

[Mye99] Andrew C. Myers. Jflow: Practical mostly-static information flow control. In
Proceedings of ACM Symposium on Principles of Programming Languages, pages
228–241, 1999.

[PC00] Francois Pottier and Sylvain Conchon. Information flow inference for free. In
Proceedings of ACM International Conference on Functional Programming, 2000.

[RH99] James Riely and Matthew Hennessy. Trust and partial typing in open systems of
mobile agents. In Proceedings of ACM Symposium on Principles of Programming
Languages, 1999.

[SM02] Andrei Sabelfeld and Andrew Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 2002.

[VS97] D. Volpano and G. Smith. A type-based approach to program security. In Pro-
ceedings of the International Joint Conference on Theory and Practice of Software
Development. Springer-Verlag, 1997.

[ZCZM03] Lantian Zheng, Stephen Chong, Steve Zdancewic, and Andrew C. Myers. Building
secure distributed systems using replication and partitioning. In IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, 2003.

[ZZNM02] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers. Se-
cure program partitioning. Transactions on Computer Systems, 20(3):283–328,
2002.

T. Dimitrakos et al. (Eds.): FAST 2005, LNCS 3866, pp. 217 – 234, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Security Management Information Model Derivation
Framework: From Goals to Configurations

R. Laborde, F. Barrère, and A. Benzekri

Université Paul Sabatier - IRIT/SIERA,
118 Rte de Narbonne F31062 Toulouse Cedex04

Tel.: +33 (0) 5 61 55 60 86; Fax: +33 (0) 5 61 52 14 58
{laborde, barrere, benzekri}@irit.fr

Abstract. Security mechanisms enforcement consists in configuring devices
with the aim that they cooperate and guarantee the defined security goals. In the
network context, this task is complex due to the number, the nature, and the
interdependencies of the devices to consider. We propose in this article a global
and formal framework which models the network security management
information from the security goals to the security mechanisms configurations.
The process is divided into three steps. First, the security goals are specified and
the specification consistency is checked. Secondly, the network security tactics
are defined. An evaluation method guarantees the consistency and the
correctness against the security goals. Finally, the framework verifies that the
network security tactics can be enforced by the real security mechanisms.

1 Introduction

Basically, the security of distributed applications is supported by a set of security
services. ISO defines the five following services [9]: access control, identification/
authentication, confidentiality, integrity, non-repudiation. These security services are
implemented by means of security mechanisms such as security protocols (IPsec,
SSL, SSH) or access control mechanisms (firewalls, Application Security Gateways,
OS access control systems, antivirus). The security administrator should create his
own security solution selecting the security services to use and the security
mechanisms’ configurations to apply.

But the distributed application security management is by nature a distributed
function which implies the cooperation of different devices with different capabilities.
In [11], we have pointed to different problems that can disturb this fragile co-
ordination: the inconsistency and the non-correctness of the security mechanisms.

The security mechanisms inconsistency indicates that two or more security
rules/configurations are contradictory. The atomic inconsistency problem indicates
that two or more configuration rules for the same security mechanism and on the
same device are incompatible. For example, one rule states that data flows with the
source IP addresses in the range 10.0.0.0/8 can pass through the firewall and another
rule on the same firewall states that the data flow with the source IP address
10.20.30.4 is denied. Several techniques [16] can be used to solve it, e.g. “negative
authorizations take precedence”, “the authorization that is most specific w.r.t. a partial
order wins”, etc. The distributed inconsistency concerns incompatible rules mapped

218 R. Laborde, F. Barrère, and A. Benzekri

on different security mechanisms or devices. Thus, the administrator should pay
special attention to all dependency relations between rules applicable on different
devices. For example, an IPsec tunnel is correctly configured between two VPN
gateways and a firewall between them blocks their IPsec data flows. Some papers
provide a partial solution considering only one kind of device, for example firewalls
[2,5] or filtering IPsec gateways [7,8].

In addition to the inconsistency problem, security mechanisms implementation
must guarantee the administrator’s security objectives; this is the correctness problem.
The approach followed by network management practitioners consists of using
different abstraction levels of management information, from the goals to the
configurations [14,17]. For example, policy based network management uses this
approach in order to automate the management task [18]. Nevertheless, the refinement
process, called in this context derivation, is not controlled yet.

Fig. 1. The proposed framework process

In this article, we propose a global formal framework which includes an
expression and a verification tool to control the network security management
information. The correctness problem implies being able to specify the security goals,
the security mechanisms and their configuration. The inconsistency problem depends
only on the security mechanisms. Our framework is decomposed into three steps
(fig. 1). The first one deals with the security goals specification and consistency
evaluation using the RBAC model. The second part proposes the definition of a
technology independent network security tactics which are evaluated against both
inconsistency and correctness problems. The approach focuses on the data flows and
the different applied treatments. The last part verifies that the security tactics can be
enforced by the technologies used.

2 Network Security Goals Definition

When a user accesses a service, a set of data flow is exchanged between the device
from which the user launches the service and the devices supporting the service
execution (fig. 2). So, a relation between a network security policy and an application
security policy can be distinguished. For example, if the application security policy
states that user “u1” can read object “o1”- noted (u1, o1, +read), then it implies that a
corresponding data flow flow(o1,+read) between the device of user “u1” (noted
device(u1)) and the device of “o1” (noted device(o1)) can exist on the network.
Consequently, the associated network security policy must allow the data flows
flow(o1,+read) between these two devices – noted ∀du1∈device(u1), ∀do1∈device(o1),

RBAC model

Data Flow based
Network Model

Device/technology
Model

Consistency

Correctness

Consistency

Feasibility

Security objectives

Security Configuration

 A Security Management Information Model Derivation Framework 219

(du1 ↔ do1, +flow(o1, read)). Conversely, if the application security policy states that
user u2 cannot read object o2 noted (u2, o2, -read), there is no flow flow(o2,read)
between the devices of u2 and o2. Therefore, the network security policy must forbid
flow(o2, read) between the devices of u2 and o2, i.e., ∀du2∈device(u2),
∀do2∈device(o2), (du2 ↔ do2, - flow(o2, read)). We thus obtain the derivation relation
noted “ d” as ∀ u ∈ USERS, ∀ o ∈ OBJECTS, ∀ a ∈ ACTIONS, ∀du∈device(u),
∀do∈device(o), (u, o, ±a) d (du ↔ do, ± flow(o, a)).

Access control models [1,4] represent tools suited for application security
modelling. First, they allow the expression that an entity (called user/subject) can
perform or not given actions on another entity (called object). Moreover, each access
control model is associated to a set of security validation techniques in order to
guarantee the consistency of the defined rules.

ServerComputer

Acces Control
Rules

Data Flows

Application Security
Policy

Network Security
Policy

D
er

iv
at

io
n

Fig. 2. Security policy derivation

 Object User Role

 Session

 Operation

Permission

Role hierarchy

User
Assignement

Permission
Assignement

Role_Session
User_Session

Fig. 3. The NIST RBAC Model

The framework proposes the use of the NIST RBAC model [1] that brings the
notion of role and hierarchy of roles (fig. 3). A role represents a group of users based
on their competencies and responsibilities in a given organization [6], and role
hierarchies [13] represents the organization considering its membership. An
organizational structure is often specified in terms of organizational positions such as
regional, site or departmental network manager, service administrator, service
operator, company vice-president. Specifying organizational policies for people in
terms of role-positions rather than persons, permits the assignment of a new person to
the position without re-specifying the policies referring to the duties and
authorizations of that position. Consequently, with RBAC, users are not directly
granted permissions to perform an operation, but operations are associated with roles.
Then, roles can be updated without having to update the privileges for every user
which facilitates the users’ management. RBAC also supports several well-known
security principles including the specification of competency to perform specific tasks,
the enforcement of least privileges, and the specification and enforcement of conflicts
of interest rules [6]. Moreover, RBAC has the potential to support DAC or MAC
policies and properties [15] such as the enforcement of the simple security and the
*-properties [3].

Thereafter, we consider that there is no hierarchy and that roles have disjoint
privileges (if this is not the case then we may create a partition of this set): such a
constraint will help us to group data flows based on the permissions assigned to one
role and then identifying them by the role.

Users are considered in an RBAC system by their assigned role. Consequently, the
derivation relation becomes: ∀ r ∈ ROLES, ∀ oi ∈ OBJECTS, ∀opj∈OPERATIONS,

220 R. Laborde, F. Barrère, and A. Benzekri

∀u,u’ ∈ USERS, ∀du ∈ device(u), ∀du’ ∈ device(u’), ∀ doi ∈ device(oi) •
(r, {(opj, oi)}) ∈ PA ∧ (u,r) ∈ UA ∧ (u’,r) ∉ UA d ∀i,j, (du ↔ doi, +flow(oi, opj)) ∧
(du’↔ doi, - flow(oi, opj)) where PA is the relation “Permission Assignment” and UA
is relation “User Assignment”.

Afterward, we note by the name of the role the set of flows corresponding to the
permissions assigned to the role.

3 A Flow Oriented Modelling Language

The security application layer focuses on the end-to-end entities but intermediate
systems (e.g. routers, switches, secure gateways, firewalls) are also involved in the
security deployment. The problem consists in specifying the co-operation between
different devices which demand different configurations based on the technologies
implemented.

The notion of data flow is at the heart of the network security management
problem. Data flows are not restricted to a set of IP addresses, application ports, etc.
Here, data flows represent the data exchanged between the entities that perform given
actions (the subjects in the RBAC model) and the entities that store information (the
objects in the RBAC model). So our approach only considers the applicable
treatments on data flows [12]. They can be brought together into four basic
functionalities (fig. 4). Devices and networks are specified while interconnecting
these basic functionalities:

− Mechanisms that consume/produce data flows such as end-systems - called end-
flow functionalities,

− Mechanisms that propagate data flows such as physical supports and associated
devices - called channel functionalities,

− Mechanisms that transform a data flow into another such as the security protocols
or NAPT gateways - called transform functionalities,

− Mechanisms that filter data flows such as firewalls - called filter functionalities.

Network Infrastructure

Access Control Rules

User A User B Data

C

: End Flow Functionality : Filter Functionality : Active Entity

 : Channel Functionality : Transform Functionality : Passive Entity

C

Fig. 4. The specification elements

 A Security Management Information Model Derivation Framework 221

Each basic functionality semantic is defined by means of Coloured Petri Nets
(CPNs [10]) using “CPN tools” [19]. The colour of token specifies the data flow. The
tuple <efs,efd,role,transf_list> defines a data flow where efs is the end-flow that
produced the data flow, efd is the destination end-flow, role represents the data flow
characteristics based on the access control rights associated to this role and transf_list
is the list of transformations applied to the data flow.

The state of the system is represented by the tokens distribution in the places. In
the CPN model, the state changes when a transition is fired. A boolean expression,
called guard, can be associated to a transition as a fire condition. If tokens in places
linked to the transition pre-arcs satisfy the guard, they are removed from the places
and new ones are created into the places linked to the post-arcs. Functions on post-
arcs allow the control of the colour and the number of the new tokens.

3.1 Active End-Flow Functionalities

Active end-flow functionalities (AEF) produce and consume data flows. They are
connected to the RBAC model subjects. So, they constitute the first part of the
association between the application security model and the network security model.
Figure 5 specifies the formal semantic of the AEFs. The couple efi

em/tefi
em represents

its production capacity. In the initial state, the place efi
em contains one token for each

data flow that it can send, i.e., the combination of the roles assigned to the subjects
and the passive end-flows assigned to the same roles. The place efi

rec corresponds to
its data flows consuming capability.

3.2 Passive End-Flow Functionalities

Passive end-flow functionalities (PEFs) produce and consume data flows.
Nevertheless, PEFs are connected to the objects of the RBAC model and form the
other part of the link between the application and the network security model. Figure 6
specifies its formal semantic. We have modelled the couple AEF/PEF like the
client/server interactions: PEFs reply to the data flows sent by the AEFs. Data flows
are received in place efi

rec. If the data flow end-flow functionality destination is the
same as one of its assigned roles and understandable (i.e. no transformation
guaranteeing the confidentiality property is applied), the response is created (the
OK_NOK_efi post-arc, the place efi

em and the transition tefi
em).

3.3 Transform Functionalities

Transform functionalities represent the capability to modify the data flows. It can
symbolize encryption protocols such as IPsec where one transform functionality adds
some security services (e.g. confidentiality) and another removes it, or the Network
Address Translation where only one transform functionality is concerned. We have
defined the security group notion which characterizes everything that specifies a
transformation. For example, one IPsec security association is specified by a specific
security group with a set of associated security services. A LIFO (Last In First Out)
structure represents the order of applied transformations. It naturally defines
the encapsulations of transformations. The transform configurations are sets of
{efs},{efd},role group where {efs} is the set of source end-flows, {efd} is the set of

222 R. Laborde, F. Barrère, and A. Benzekri

tefi
emefi

em

efi
rec

Other
Functionality

1`(efi, efs1, role1, [(any,none)]) ++
1`(efi, efs2, role1, [(any,none)]) ++
1`(efi, efs, role2, [(any,none)]) ++
 ...
1`(efi, efsn, rolen, [(any,none)]) ++

Fig. 5. The active end-flow functionality

tfifct1fct2
Other

Functionality
fct1

fifct1fct2
Other

Functionality
fct2

hist_fifct1fct2 [(efs=a andalso efd=b andalso
r=role andalso transf(g,tl))
orelse ...]

tfifct2fct1 fifct2fct1

hist_fifct2fct1

[(efs=a' andalso efd=b' andalso
r=role' andalso transf(g',tl))
orelse ...]

Fig. 7. The filter functionality

tefi
emefi

em

efi
rec

Other
Functionality

OK_NOK
efi

[(r=role1 orelse r=role2 orelse ...r=rolem) andalso
AEF.legal(efs) andalso not confidential(tl)]

Update(list,(efs, efd, r, tl))

accept_efi

hist_efi

[not member((efs,efd,r,tl),list)]

list

(efi, efs, r, tl)

Fig. 6. The passive end-flow functionality

ttfifct1fct2
Other

Functionality
fct1

tfifct1fct2

hist_tfifct1fct2

tfifct2fct1

hist_tfifct2fct1

[not transf(g',tl)
orelse ...]

case (efs,efd,r,tl) of
(x,y,role',_)=>
 1`(x,y,role',delTransf(g',tl)
| ...
|(a,b,role,_)=>
 1`(a,b,role,addTransf(g,tl)
| ...
| _=>1`(efs,efd,r,tl)

ttfifct2fct1
case (efs,efd,r,tl) of
(a,b,role,_)=>
 1`(a,b,role,delTransf(g,tl)
| ...
|(x,y,role',_)=>
 1`(x,y,role',addTransf(g',tl)
| ...
| _=>1`(efs,efd,r,tl)

[not transf(g,tl)
orelse ...]

Other
Functionality

fct2

Fig. 8. The transform functionality

Other
Functionality

fct2

cifct1

tcifct1

Other
Functionality

fct1

Other
Functionality

fctn

cifct2

tcifct2

cifctn

tcifctn

hist_ci

[not member((efs,efd,r,tl),list)]
[not member((efs,efd,r,tl),list)]

[not member((efs,efd,r,tl),list)]

Update(list,(efs, efd, r, tl))

Update(list,(efs, efd, r, tl))

Update(list,(efs, efd, r, tl))

list
list

list

Fig. 9. The channel functionality

destination end-flows, role the used role and group the transformation to apply. The
formal semantic is given in fig 8. The data flows are received in the place fifctjfctk. A
transformation with a specific security group can be applied one time to a specific
data flow (this constraint help us to obtain some interesting CPN properties). The

 A Security Management Information Model Derivation Framework 223

guard on the transition ttfifctjfctk guarantees it. If the token passes, it is stored in the
place hist_tfifctjfctk. Finally, the function on the post-arc removes (function delTransf)
and/or adds (function addTransf) a transformation according to the configuration.

3.4 Filter Functionalities

The filter functionalities represent the capability to filter or let pass the data flows.
They have a configuration which is a set of 4-tuples {efs},{efd},role,group where {efs}
is the set of source end-flows, {efd} is the set of destination end-flows, role is the used
role and group is the last secure group in the LIFO. The formal definition is given in
fig 7. The filter capability is specified using guards on the transitions tfifctjfctk. If the
token passes through the transition, it is stored in the place hist_fifctjfctk.

3.5 Channel Functionalities

The channel functionalities represent the data flows propagation environment that can
be material (e.g. wire or wireless) or an abstraction for the unknown systems (e.g.
Internet). Figure 9 provides the formal semantic. A data flow is received from one of
the connected functionalities fctj in place cifctj and is transmitted to all the other
connected functionalities. A data flow can only be transmitted one time through a
channel functionality thanks to the place hist_ci whose colour domain is a list of flow.
This constraint allows us to get some interesting CPN properties.

4 The Evaluation Method

The interactions between the specified atomic functionalities should be evaluated in
order to prove that the security tactics involve no conflict and correspond to the
required goal. The process allows the checking of the network security mechanisms
consistency and their correctness against the RBAC policies. It is divided into five
steps. First, a specification is transformed into the corresponding Colored Petri Net. It
is produced by interconnecting each CPN sub-model of the basic functionalities in the
specification. Then, the CPN model produces a reachability graph which can be
analyzed thanks to the set of security properties defined in the Computational Tree
Logic (CTL) such as classical properties (End-to-End properties, i.e., confidentiality
and accessibility) and specific configuration properties (properties on intermediate
functionalities) on the Kripke structure corresponding to the reachability graph. A
theorem states that such an analysis is equivalent to the analysis of these properties
without the CTL operators (i.e. in the first order logic) on the only one dead state of
the Kripke structure which can be obtained by simulation. Finally, the model is
checked, i.e. the dead state satisfies or not all the security properties. If it does not
satisfy them then the mechanisms hence defined do not fulfill the requirements
otherwise the specification is considered to be secure.

4.1 Network Security Properties Definition

We use the following notation:

− FUNCT, the set of functionalities,
− FILTER, the set of filter functionalities,

224 R. Laborde, F. Barrère, and A. Benzekri

− ACTIVE, the set of AEFs and PASSIVE, the set of PEFs,
− ROLE, the set of roles,
− GROUP, the set security groups,
− Assigned :(ACTIVE∪ PASSIVE) → 2ROLE, the function defines the set of roles

assigned to an end-flow functionality,
− TRANSF_LIST, the set of transformation LIFOs,
− FLOW, the set of colors in the CPN, and PLACE, the set of places in the CPN,
− Tokens: PLACE Bag(FLOW), where Bag(FLOW) is the set of multi set on

FLOW. It provides the set of tokens in a place,
− Confidential : TRANSF_LIST Boolean, returns if a transform list contains a

security group that provides the confidentiality property,
− Pathk(fct1,fctn) = <fct1, fct2, …,fcti, …fctn> where ∀i,j, i j, fcti fctj, returns the kth

path between fct1 and fctn.

For the simplification of properties writing, we use the special character “_” for
indicating one of the possible values of the variable type. The expression “state
property” denotes that the state in the Kripke structure of the CPN reachability graph
satisfies the property – si is the initial state and sf

 is the dead sate.
In addition, we use the following CTL operators:

− s AF(φ) is true if for all the states sequences form “s”, there is a state which
satisfy φ.

− s AG(φ) is true if for all the states sequences form “s”, all the states satisfy φ.

Property of confidentiality
Basically, the property of confidentiality protects the data from unauthorized
disclosure. Thus, in our model, it prohibits an end-flow functionality from receiving at
any time a untransformed data flow with any unassigned role.

∀ ef ∈ ACTIVE, ∀ <_,_,r,tl> ∈ FLOW, ¬ Confidential(tl), r ∉ Assigned(ef)
si AG<_,_,r,tl> ∉Tokens(efrec).

Property of accessibility
This property stipulates that all the granted services must be available to all the
authorized entities. In the network environment, the data flows corresponding to this
must be able to travel between both devices. Consequently, its translation in our
model is that all active (resp. passive) end-flow functionalities must be able to
consume all the data flows with an assigned role sent by every passive (resp. active)
end-flow functionalities.

Let ACTIVEr = {efa ∈ ACTIVE | r ∈ Assigned(efa)}
 PASSIVEr ={efp∈ PASSIVE | r ∈ Assigned(efp)}
∀r ∈ ROLE, ∀efa ∈ ACTIVEr, ∀efp ∈ PASSIVEr, ¬Confidential(tl),
si AF(<efp,efa,r,tl>∈Tokens(efa

rec)) ∧ AF(<efa,efp,r,tl> ∈ Tokens(accept_efp))

As we intend to address devices configurations, we complete these classical
security properties with new ones.

 A Security Management Information Model Derivation Framework 225

Property of partitioning
This is used to limit the propagation of data flows in order to respect the least
privileges principle. It declares that a data flow can pass a filter functionality only if
the latter is situated between the data flow source and an authorized destination. We
apply this constraint to the filter functionalities, stating that a filter functionality
allows a data flow to pass if it is situated between the data flow source and a possible
authorized destination.

Let ACTIVEr = {efa ∈ ACTIVE | r ∈ Assigned(efa)}
 PASSIVEr ={efp ∈ PASSIVE | r ∈ Assigned(efp)}
∀f ∈ FILTER, ∀fct1,fct2 ∈ FUNCT, ∀r ∈ ROLE, ∃efa ∈ ACTIVEr, ∃efp ∈
PASSIVEr , si ∀k, f ∉ Pathk(efa, efp) AG(<efa,efp, r,_> ∉ Tokens(hist_f_fct1fct2))
∧ ∀k, f ∉ Pathk(efp, efa) AG(<efp,efa, r,_> ∉ Tokens(hist_f_fct1fct2))

The two following constraints aim to detect useless filtering or transform rules in

the configurations.

Non productive filtering rule
This is used to eliminate unnecessary filtering rules. When f a filter functionality is
connected to the functionalities fct1 and fct2, we say that the filtering rule
{efs},{efd},r,g from fct1 to fct2 is non productive if no data flow <efs,efd,r,g.tl> tries
to pass through the filter functionality.

Let the rule FRL = fct1 fct2 {efs},{efd},r,g where fct1,fct2∈ FUNCT,
efs,efd∈ACTIVE∪PASSIVE, r ∈ ROLE, g ∈ GROUP then FRL is non productive if
and only if si AG<efs,efd,r,g.tl> ∉ Tokens(hist_f_fct1fct2).

Non productive transform rule
When tf a transform functionality is connected to fct1 and fct2, we say that the
transform rule {efs},{efd},r g from fct1 to fct2 is non productive if any flow
<efs,efd,r,_> passes through the transform functionality at any time.

Let TRL = fct1 fct2 {efs},{efd},r g where fct1,fct2∈ FUNCT, efs,efd∈
ACTIVE∪PASSIVE, r ∈ ROLE, g ∈ GROUP then TRL non productive if and only if
si AG <efs,efd,r,_>∉ Tokens(hist_f_fct1fct2) ∨ AG <efd,efs,r,g.tl> ∉ Tokens
(hist_f_fct2fct1).

4.2 State Graph Properties Definition

The state graph of a specification in our language has three important properties that
make its analysis easier.

Theorem 1: All the state graphs of a specification in our language are finite.
Demonstration: See appendices (Section 9).

Theorem 2: All the state graphs of a specification in our language have a single dead
state1.
Demonstration: See appendices (Section 9).

1 There is no transition from a dead state.

226 R. Laborde, F. Barrère, and A. Benzekri

Theorem 3: The analysis of the dead state is necessary and sufficient for the
properties defined in section 4.1
Demonstration: See appendices (Section 9).

Theorem 1 shows that it is possible to build all the states of a specification CPN
reachability graph. Nevertheless, if the graph is sizeable, our method is vulnerable to
the combinatorial explosion problem. Both theorem 1 and theorem 2 compensate for
this problem because the single dead state is sufficient for the analysis and its
uniqueness allows us to calculate it by simulation. Consequently, we don’t have to
build all the states. Therefore, our method does not suffer from the combinatorial state
explosion and a sizeable specification can be analyzed. A Java-Based tool automates
the calculation of the security tactic specifications CPN as well as the dead state of
their reachability graphs. Also, it analyzes the dead state according to the previously
described security properties.

5 A Specification Example

The following example explains how the language is used to implement an
IPsec/VPN case study strategy definition (fig. 10). As in a traditional enterprise
network, this example considers an edge router interconnecting a private network and
a DMZ. The App_Server and the FTP servers are respectively installed in the private
network and in the DMZ (fig. 6). The application level security policy is an RBAC
one, without hierarchy, where two user groups VPNmembers and Others are defined.
This organization is only based on the granted privileges. The App_Server server is
dedicated only to the services usable by the VPNmembers group. The FTP_Server has
two directories: /confidential and /pub. The directory “confidential” contains data
only accessible to the VPNmembers users group. Data of the “pub” directory is
accessible to everyone. User1, User2, User3 and User4 belong to VPNmembers and
Others groups. User5 is only member of the Others group.

The service management layer RBAC policy can be expressed as:

Permissions(VPNmembers)= {(+all_access,FTP_Server/confidential),
(+all_access, App_Server)}

Permissions(Others)= {(+all_access,FTP_Server/pub)}

The objective is to specify a VPN security strategy. The Private Network, the DMZ
and the Internet interconnection infrastructures are specified thanks to channel
functionalities because we use their transmission functionality. This approach of
specification with large granularity only considers the minimum set of functionalities
provided by these infrastructures: their interconnection capability.

On the contrary it is possible to refine a specification as the edge router shows it. It
has obviously the interconnection functionality (the channel functionality), setting as
a security gateway with filtering capabilities (the three filter functionalities) and
encryption mechanisms (the transform functionality, for example an IPsec module is
installed). The modelling of the routing is carried out by filtering rules on the filter
functionalities.

The servers are specified by two PEF. The App_Server server (EF2) has the
VPNmembers role because only the users with the VPNmembers role have the access

 A Security Management Information Model Derivation Framework 227

Private Network

User1

User2

Router

Internet

User5

User3

DMZ

App_Server

FTP_Server

/Confidential
/pub

User4

Private
Network

Edge
Router

DMZ

Internet

Rule1

Rule2

Rule5

Rule6

 {ef2,ef3},{ef4},
VPNmembers

->group1

 {ef4},{ef2,ef3},
VPNmembers

->group1

R
ul

e
3

R
ul

e
4

VPNmembers
Others

VPNmembers

VPNmembers
Others

Others

VPNmembers
Others

ef1

ef2

ef3 ef4

ef5

f1

f2

f3

tf2

tf1

Fig. 10. Architecture and specification example

rights. The PEF corresponding to the FTP server (EF3) has the roles Others and
VPNmembers because the permission (+all_access, FTP_Server/pub) is assigned to
the Others role and (+all_access, FTP_Server/confidential) to the VPNmembers role.

The devices of user1 and user2 are represented by a single AEF (EF1) because
user1 and user2 have the same roles (Others and VPNmembers) and are connected to
the same channel functionality thanks to the concept of role which reduces the overall
size of the specification. In the same way, the devices of user3 and user4 are specified
by only one AEF (EF4). The device of user5 is specified by a different AEF (EF5)
because the VPNmembers role is not assigned to him. Arbitrarily adding an AEF with
roles which permissions are reduced makes it possible to define a degree of
confidence that can be granted to a channel functionality. In this example, we do not
specify the structure of the Internet network, but it is perceived as an interconnection
environment where any connected user has at least the permission to access the /pub
directory of the FTP_Server. This allows a great flexibility of specification according
to the level of desired and/or known details.

Two transform configurations are defined on the transform functionalities tf1 and
tf2 that add security properties - according to the group1 transform actions - to the
communication between ef2, ef3 and ef4 with the role VPNmembers (fig. 10).
Moreover, the following filtering rules associated with the filter functionalities are
specified:

• Rule1 = <{ef1}, {ef3}, VPNmembers, any>, <{ef2}, {ef4}, VPNmembers, any>,
<{ef1},{ef3}, Others, any>

This rule permits the untransformed data flows from ef1 to ef3
with the roles VPNmembers and Others, and the untransformed
data flows from ef2 to ef4 with the role VPNmembers.

228 R. Laborde, F. Barrère, and A. Benzekri

• Rule2 = <{ef3}, {ef1}, VPNmembers, any>, <{ef4}, {ef2}, VPNmembers, any>
<{ef3},{ef1}, Others, any>

This rule grants the reverse data flows permitted by rule1 in
order to enable bidirectional communications between the end-
flows.

• Rule3 = <{ef3},{ef1, ef4}, VPNmembers, any>, <{ef3},{ef1, ef4, ef5}, Others, any>
This rule permits the untransformed data flows from ef3 to
ef1 and ef4 with the roles VPNmembers and Others, and the
untransformed data flows from ef3 to ef5 with the role
Others.

• Rule4 = <{ef1, ef4}, {ef3}, VPNmembers, any>,<{ef1, ef4, ef5}, {ef3}, Others, any>
This rule grants the reverse data flows permitted by rule3.

• Rule5 = <{ef2, ef3}, {ef4},VPNmembers, group1>, <{ef3}, {ef4, ef5}, Others, any>
This rule permits the data flows transformed according to
group1 from ef2 and ef3 to ef4 with the role VPNmembers, and
the untransformed data flows from ef3 to ef4 and ef5 with the
role Others.

• Rule6 = <{ef4}, {ef2, ef3},VPNmembers, group1>, <{ef4, ef5}, {ef3}, Others, any>
This rule grants the reverse data flows permitted by rule5.

This specification approach facilitates the security network management layer
expression being technologies independent and aggregating management information
with the concepts of basic functionalities and roles.

This specification respects all the previous properties (i.e. confidentiality,
availability and partitioning) and contains no non productive filtering or transform
rules. So, the functionalities’ configurations are consistent and correct against the
RBAC policy. Nevertheless, it does not imply that this network security tactics can be
enforced by the underlying technologies.

6 Enforcement Validation

The language presented previously allows the expression of network security
strategies using a data flow based approach and regardless of technology specifics.
The language permits a high abstraction data flows definition. However, each
technology used for enforcing the network security tactics has its own capabilities. A
technology capability means:

1. the possible actions (i.e., the treatments that can be applied on the data flows),
2. and the possible discrimination criteria to differentiate the data flows (i.e., the set

of data flow value types that the device/technology can perceive).

Examples of the discrimination criteria are:

− HTTP proxies can differentiate data flows based on keywords in HTML pages.
− Stateless firewalls can only differentiate data flows according to IP addresses,

transport layer protocol and port numbers.
− Switches view data flows as MAC addresses, Source Service Access Points and

Destination Service Access Points numbers.

 A Security Management Information Model Derivation Framework 229

6.1 Enforcement Formalisation

The problem of management refinement at this layer is to determine if the
technologies are able to enforce the associated security tactics or not. By nature,
the atomic functionalities represent the actions capabilities of the technologies. Then,
the action part does not represent a possible refinement problem. Nevertheless, the
language permits a high abstraction data flows definition. Consequently, a distinction
between two data flows made at the network security tactics abstraction level by an
atomic functionality does not imply that the corresponding technology is able to do it.
This discrimination criteria problem is formalized as follows.

Let :
− D, the set of possible values characterizing data flows,
− T, the set of types of values (e.g., IP address, transport protocol, port number),
− CX ⊆ T, the distinction capability of device X (e.g., routers perceive the IP

addresses, transport protocol, port numbers, etc.). The distinction capability of a
device is modelled as the set of types of values that it can distinguish.

− f : T (DT) a technology layer data flow where DT is the set of values of type T.
A data flow is modelled as a set of functions which return for each type of values a
set of values of this type.

− F, the set of technology layer data flows,
− G : 2F 2F , the function associated to the transform group G with any = identity,
− : EF × EF × ROLE 2F, the function that creates the associated flows (i.e., the

set of values) associated to an untransformed data flow in the Laborde et al model.

Definition 1.
The derivation function between the network security tactics abstraction and device
abstraction is defined as:

Definition 2.
We call the technology X perception of the data flow f:

Definition 3.
We say that technology X confuses the data flows f1 et f2 if X((f1)) ∩ X((f2))≠∅
that we note

Definition 4 - Strict property of derivation capability.
Technology X is said able to enforce a network security tactics:

1. if the strategy of functionality F associated to technology X states two different
actions for two distinct data flows f1 and f2,

2. it implies

Definition 5 - Loose property of derivation capability.
Technology X is said able to enforce a network security tactics:

1. if the strategy of functionality F associated to technology X states two different
actions for two distinct data flows f1 and f2, and (f1 and f2 pass through F)

2. it implies

P

((ef1, ef2,role, <G1 G2 … Gn any>)) G1" G2"… Gn" any " (ef1, ef2, role)

 VX(f) = f |Cx.

V V
VX((f1)) = VX((f2)).

VX((f1)) VX((f2))

VX((f1)) VX((f2))

" " "

230 R. Laborde, F. Barrère, and A. Benzekri

flow1

flow1 flow1

flow2

1 2

Fig. 11. Loose property of derivation capability example

The loose property of derivation capability, contrary to the strict property of
derivation capability, considers that if X never sees f1 and f2, X can confuse both data
flows and X is able to apply the network security tactics.

For example, the filter functionality tactics in fig 11 states that only the data flow
flow1 can pass. Implicitly, the other data flows such as flow2 must be filtered. Then,
two system behaviors are conceivable:

6.2 Enforcement Analysis Example

In the example of fig. 10, the transform functionality tf2 has the following configu-
ration {ef4}, {ef2, ef3}, VPNmembers group1. Both data flows <ef4, ef3,
VPNmembers, any> and <ef4, ef3, Others, any> pass through tf2. We recall that the
directory “confidential” on FTP_Server contains data only accessible to the
VPNmembers users group and the data of the “pub” directory is accessible to Others.
We consider also that the security group group1 represents an IPsec tunnel. The
distinction capability of IPsec CIPsec is the set of types IP address, port number and
transport protocol. Both VPNmembers and Others role use the same transport protocol
TCP and protocol numbers 21 and upper than 1024.

1. Both flow1 and flow2 try to pass through the filter functionality. In this case,
VX((flow1)) must be different from VX((flow2)), where X is the technology
that enforces the strategy.

2. Only flow1 tries to pass through the filter functionality. In this case, VX((flow1))
can be equal to VX((flow2)) because X has never to distinguish flow1 and flow2.

The address space used for the VPN architecture is private. So, the IP address
of FTP_Server for the VPNmembers role is different from its IP address for the
Others role. Consequently, VIPsec((<ef4, ef3, VPNmembers, any>)) VIPsec((<ef4,
ef3, Others, any>)). Then, the tactics can be enforced by IPsec.

Case :1

ase 2 The address spaces used for the VPNmembers and Others roles are not
different. So, the IP address of FTP_Server for the VPNmembers role is the same as
its IP address for the Others role. Consequently, VIPsec((<ef4, ef3,VPNmembers,
any>)) = VIPsec((<ef4, ef3, Others, any>)). Then, the tactics cannot be enforced by
IPsec because IPsec confuses (<ef4, ef3, VPNmembers, any>) and (<ef4, ef3,
Others, any>).

:C

 A Security Management Information Model Derivation Framework 231

7 Conclusion

We have presented in this article a generic global framework that formalizes the
network security information management derivation process from the goals to the
configurations. The goals are specified via the RBAC model that allows us to use all
the associated analysis works. We have defined a new model to specify the network
security tactics using a data flow based approach. An analysis method has been
described and its power has been discussed. Finally, we have defined a generic device
configuration model and some derivation properties that ensure the network security
tactics to be enforceable.

Our work guarantees that the network security goals are correctly enforced.
Nevertheless, we do not consider the attackers in this framework. Consequently, our
future work will focus on including this aspect (based on risk analysis methods and
assurance evaluation methods) in order to prove a network assurance level.

Acknowledgments. We are grateful to G. Mackenzie Smith, D. Jones and B. Moore
for their English writing comments, and L. Mehats for his modelling advices.

References

1. ANSI, “Role-Based Access Control”, ANSI/INCITS 359-2004, February 2004.
2. Y. Bartal., A. Mayer, K. Nissim and A. Wool. “Firmato: A Novel Firewall Management

Toolkit”. Proceedings of 1999 IEEE Symposiumon Security and Privacy, May 1999.
3. Bell, D. E., and L. J. LaPadula, “Secure Computer Systems: Mathematical Foundations

and Model”, Bedford, MA: The Mitre Corporation, 1973.
4. Bishop M., Computer Security: Art and Science, ISBN 0-201-44099-7, 2003.
5. Ehab Al-Shaer and Hazem Hamed, “Discovery of Policy Anomalies in Distributed

Firewalls”, in IEEE INFOCOMM'04, 2004.
6. D. F. Ferraiolo, D. R. Kuhn, R. Chandramouli, Role-Based Access Control, ISBN:

1-58053-370-1, 2003.
7. Z. Fu, F. Wu, H. Huang, K. Loh, F. Gong, I. Baldine and C. Xu. “IPSec/VPN Security

Policy: Correctness, Conflict Detection and Resolution”, In Policy’2001 Workshop, 2001.
8. Guttman J. D., Herzog A. M., “Rigorous automated network security management”,

International Journal of Information Security, Issue 3, Volume 4, 2004
9. ISO, “OSI Reference Model - Security Architecture”, ISO 7498-2, 1988.

10. Jensen K., “An Introduction to the Theoretical Aspects of Coloured Petri Nets”. In: A
Decade of Concurrency, Lecture Notes in Computer Science vol. 803, 1994.

11. Laborde R., Nasser B., Grasset F., Barrère F., Benzekri A. “Network Security
Management: A Formal Evaluation Tool based on RBAC Policies”. IFIP NetCon'2004.

12. Laborde R., Nasser B., Grasset F., Barrère F., Benzékri A., “A formal approach for the
evaluation of network security mechanisms based on RBAC policies”, In ENTCS –
proceedings of WISP'04, Vol. 121., Elsevier, 2005.

13. Moffett J. D., “Control Principle and Role Hierarchies”, In Workshop on RBAC, 1998.
14. J. Moffet, M. Sloman: “Policy Hierarchies for Distributed Systems Management”. IEEE

Journal on Selected Areas in Communications, 11, 9, 1993.

232 R. Laborde, F. Barrère, and A. Benzekri

15. Osborn, S., R. Sandhu, and Q. Munawer, “Configuring Role-Based Access Control To
Enforce Mandatory and Discretionary Access Control Policies”, ACM Transactions on
Information and System Security, Vol. 3, No. 2, May 2002,pp. 85–106.

16. Samarati P., De Capitani di Vimercati S., “Access Control: Policies, Models and
Mechanisms”, Foundations of Security Analysis and Design, LNCS 2171, 2001.

17. Westerinen A., Schnizlein J., Strassner J., Scherling M., Quinn B., Herzog S., Huynh A.,
Carlson M., Perry J., Waldbusser S., “Terminology for Policy-Based Management”, RFC
3198, November 2001.

18. Yavatkar R., Pendarakis D., Guerin R., “A Framework for Policy-based Admission
Control”, RFC 2753, 2000.

19. URL http://wiki.daimi.au.dk/cpntools/cpntools.wiki

Appendices

We present here the demonstration of the three theorems.

A Demonstration of Theorem 1

In order to prove that the state graph is finite, we prove that the CPN is K-bounded.
We use the following notation:

− P is the finite set of places in the CPN that have the colour domain FLOW (i.e., all
places excluding places hist_ci and hist_efi that have the colour domain
FLOW_LIST which is a data flow list. Data flows are ordered according to the
colour domain FLOW ordering) ,

− PHIST is the finite set of places that have the colour domain FLOW_LIST,
− PreP : P 2 P, the relation that defines the set of places which have one of their

post-arcs connected to the same transition as one of the pre-arcs of a place in the
CPN,

− PAEF = {efi
em}, the set of places efi

em where efi is an AEF,

− nb_tok : P N, provides the number of tokens that have passed in one place,
− <x1, x2, … xn> a path of places between x1 and xn in the CPN where ∀i > 0, xi ∈ P,

xi ∈ Prep(xi+1),
− [x1 ∇ xn] the set of path of places between x1 and xn.

 By construction we have:

1. ∀p ∈P\PAEF, nb_tok(p)
∈)(Pr pepx

nb_tok(x)

2. ∀efi
em ∈ PAEF, nb_tok(efi

em) = ki where ki is token number at the initial state,

3. ∀ p∈ PHIST, nb_tok(p)
∈)(Pr pex

nb_tok(x).

Consequently,

∀p ∈ P\ PEF, nb_tok(p)
∈)(Pr pepx

nb_tok(x)
∈)(Pr pepx ∈)(Pr xepy

nb_tok(y)

i∀

 A Security Management Information Model Derivation Framework 233

 We note: ∀p ∈ P\ PEF, ∀y ∈ P, [y ∇ p], nb_tok(p) =
∇][py

nb_tok(y)

 By recursion, we obtain:

∀p ∈ P\ PEF, ∀efi
em ∈ PEF, [efi

em ∇ p], nb_tok(p)
∇][pefiem

nb_tok(efi
em)

If there is no cycle in the paths between two places
∇][pefiem

nb_tok(efi
em)=

∇][pefiem

ki =K

Else if there exist cycles in structural paths, for example <x2, x3> is a cycle in the
path <x1,x2,x3,x2,x3,x4>, then there is an infinite number of possible paths between x1

and x4, as <x1,x2,x3,x2,x3,x2,x3,x4>. So
∇][pefiem

ki

By construction a cycle in the CPN is produced by a cycle in the functionality
specification in our language (i.e. there are several paths between two functionalities).
Moreover, there are at least two channel functionalities and one or more filter and
transform functionalities.

If there no transform functionality in the cycle. The tokens colours cannot change.
A token with the same color can pass through a channel functionality once (place
hits_ci). So, the number of possible places path is finite.

If there is one or more transform functionalities, the tokens colours can change.
However, the transform functionalities check if the transformation security group
appear in the token transform list (guards on ttfi_fctjfctk). So, the number of tokens
colours is finite according to the number of transform functionalities and also the
number of possible places paths.

Consequently, ∀p∈P\PAEF,nb_tok(p)
∇][pefiem

nb_tok(efi
em) K’.

In addition, there is only one token at each state in all the places p∈ PHIST.
Nevertheless, this token can have an infinite number of possible values (the ordered
list of flow length can be infinite). The number of token values being finite, the list of
tokens that have passed through a channel or a PEF functionality is also finite.

To resume, ∀p ∈ P\ PAEF, nb_tok(p) K’
∀efi

em ∈ PAEF, nb_tok(efi
em) = ki

∀ i, nb_tok(ci_hist) K’’

Then the CPN is structurally K-bounded and the state graph is finite.

B Demonstration of Theorem 2

Each token is consumed by an end-flow or stopped by a filter, transform or a channel
functionality. They are also consumed by all the historic places. Then there is one or
more dead state.

In addition, the CPN has a deterministic behaviour. There is no choice (i.e., a place
with different post-arcs) in the produced CPN, and tokens are arranged in order in the

234 R. Laborde, F. Barrère, and A. Benzekri

flow list of the historical places. So the colour of the historical place does not take
into account the incoming order. Consequently, there is only one dead state.

C Demonstration of Theorem 3

Let the function post that returns the post-arcs of a place. We can define the following
simplification rules:

1. ∀p∈PLACE, ∀f∈FLOW,post(p)=null, si AG(c∉Tokens(p)) ⇔ sf c ∉Tokens(p)
Proof:
By definition si AG(c ∉Tokens(p)) sf c ∉Tokens(p) because sf finishes all the
traces. Moreover if sf c ∉Tokens(p) then ∀sj, <… sj… sf>, sj c ∉Tokens(p)
because post(p) = null and then si AG(c ∉Tokens(p))

2. ∀p∈PLACE, ∀f∈FLOW, post(p)=null, si AF(c∈Tokens(p)) ⇔ sf c∈Tokens(p)
Proof:
si AF(c ∈Tokens(p)) ∀t = <si … sf>, ∃j • < si…sj…>, sj c ∈Tokens(p).
But, post(p) = null then ∀k>j • < si…sj sk…>,sk c ∈Tokens(p). Given that sf
finishes all the sequences, sf c ∈Tokens(p). Moreover, sf c ∈Tokens(p)
∀t = <si … sf>, ∃j • <si…sj…sf>, sj c ∈Tokens(p). Then, si AF c ∈Tokens(p).

The application of these simplification rules allows rewriting of all the properties in
section 4.1 without the CTL operators on the dead state.

On Anonymity with Identity Escrow

Aybek Mukhamedov and Mark D. Ryan

School of Computer Science, University of Birmingham
{A.Mukhamedov, M.D.Ryan}@cs.bham.ac.uk

Abstract. Anonymity with identity escrow attempts to allow users of
a service to remain anonymous, while providing the possibility that the
service owner can break the anonymity in exceptional circumstances,
such as to assist in a criminal investigation. A protocol for achieving
anonymity with identity escrow has been presented by Marshall and
Molina-Jiminez. In this paper, we show that that protocol suffers from
some serious flaws. We also identify some other less significant weaknesses
of the protocol, and we present an improved protocol which fixes these
flaws. Our improved protocol guarantees anonymity even if all but one
of the escrow holders are corrupt.

1 Introduction

Users of services such as opinion surveys or media downloads may wish to remain
anonymous to the service provider. However, it may be important for service
providers to be able to break anonymity in special circumstances – for example,
to assist a criminal investigation. Identity escrow is designed to permit these
two aims. The notion was first introduced by Kilian and Petrank in [2], which
was motivated by the ideas from key escrow encryption systems (e.g. [3], [5]). It
allows an agent A to use services provided by S without revealing her identity
to S, while allowing S to obtain it in pre-agreed special circumstances (e.g. in a
misuse), thus offering a balance between privacy and monitoring/accountability.
To achieve this, A places her identity in an escrowed certificate generated with
a trusted issuer, which she presents to S when requesting its services. The cer-
tificate is verifiable, viz. S is given a guarantee that the escrowed certificate is
valid and that the identity is recoverable (with a help of escrow agent, which is
the same as issuer in our exposition).

Clearly, this identity escrow system breaks down if issuer is dishonest, and to
address this problem Marshall and Molina-Jiminez [4] proposed a protocol for
anonymity with identity escrow, where escrowed certificate is generated by a set
of issuers (named identity token providers in their paper). Neither S nor any
identity token provider are supposed to know the identity behind an escrowed
certificate, but if it is proved necessary, all token providers can cooperate in
order to reveal it.

In this paper, however, we show that their protocol suffers from serious flaws:

– Service misuse. Any token provider Ti can misuse services of S (or let
someone else do that), and can implicate any entity (such as A) in such
misuse.

T. Dimitrakos et al. (Eds.): FAST 2005, LNCS 3866, pp. 235–243, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

236 A. Mukhamedov and M.D. Ryan

– Identity compromise. For each escrowed certificate Φ that S receives,
there exists a token provider Ti who in coalition with S can recover the
identity escrowed in Φ.

Additionally, if S has successfully requested for a certain escrowed cer-
tificate to be uncovered, then it can discover the identity of any subsequent
user of its services.

We also identify some other less significant weaknesses of the protocol in
[4], and present an improved protocol which fixes these flaws. We beleive our
protocol guarantees anonymity even if all but one of the token providers are
corrupt.

The paper is organised as follows. In the next section, we present prelimi-
naries, including the original protocol. Our analysis follows in section 3, and in
section 4 we present our improved version of the protocol. Section 5 contains our
conclusions.

2 Preliminaries

2.1 Notation

The following labeling conventions are used throughout the paper:

– S denotes an anonymous service provider.
– T = {T1,T2, . . . Tq} is a set of identity token providers.
– Φi is an identity token issued by Tai . We also write ΦA for the identity token

obtained by A by using the protocol.
– E = {E1, . . . ,Ek} is a set of adjudicators.
– A is a service user. Â denotes the receiver A of a message, when the identity

of A is not known to the message sender.
– KA is A’s public key. {m}K is the message m deterministically encrypted

with the public key K.
– [m]K− is the message m signed with the private key corresponding to the

public K. We assume that [{m}K]K− , {[m]K−}K and m are all distinct
(thus, in particular, the PKI algorithm is not simple use of RSA).

2.2 The Original Protocol

Marshall and Molina-Jiminez’s protocol [4] consists of two parts:

– A sign-up protocol, which is the main protocol that is executed by A to
receive a token from the members of T . The token permits A to use the
service from S;

– and a complaint resolution protocol, which is executed by S upon a misuse
of its service, in order to reveal the identity of the offending anonymous user.

Signup protocol. In order for A to use the services of S, she must place her
identity in escrow with the elements of T and obtain a token. She uses this token
to prove to S that she has placed her identity in escrow, and S then provides
the service.

On Anonymity with Identity Escrow 237

The protocol works as follows. A chooses a sequence Ta1 ,Ta2 , . . . ,Tap of ele-
ments of T (possibly with duplications).

1) A −→ Ta1 : { [ITKReq]K−
A
}KTa1

2) Ta1 −→ A : { Φ1 }KA , where Φ1 = [{KA}KTa1
]K−

Ta1

ITKReq means “identity token request”. Next, A anonymises the token by
getting Ta2 , . . . ,Tap to encrypt and sign it:

∗

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1a) A ��� Tai+1 : { ITKSig, Φi }KTai+1

where Φi = [{ Φi−1}KTai
]K−

Tai

2a) Tai+1 −→ Â : { [{ Φi}KTai+1
]K−

Tai+1

}KÂ

Before signing the token, Ta+1 verifies that it has been signed by another
token provider. ITKSig indicates a signature request. ∗ indicates repeated appli-
cation. The dashed arrow indicates that a message is sent anonymously, i.e. the
receiver can not trace back the identity of the sender.

3) A ��� S : { ServReq,KÂ,ΦA }KS

4) S −→ Â : { n,E }KÂ

5) A ��� S : { H }KS , where H ⊆ E of cardinality n

6) S −→ Â : { an id }KÂ

KÂ is a new public key created by A for use with the service. Obviously, only
A has the corresponding private key. In step 4, S invites A to choose a set H ⊆ E
of n adjudicators, who will vote on whether A’s identity should be revealed in
the case of a complaint. In step 6, S sends an anonymous identifier for A to
use when using the services S offers. In their paper [4], the authors stipulate
that S will divide the identity token into several parts and distribute them to
adjudicators, using Rabin’s information dispersal [7].

The authors assume that the identity token is uniquely tied to an entity, and
adjudicators are trusted to provide a fair adjudication for complaints.

Complaint resolution protocol. When S receives a complaint Ψ , the follow-
ing protocol is executed, without A:

1) S −→ Ei : { AdjReq,Ψ }KEi

Message 1 is sent to each Ei ∈ H .

2) Ei −→ S : { [Vi]K−
Ei

}KS

238 A. Mukhamedov and M.D. Ryan

The vote Vi consists of a ballot (a decision by the adjudicator on the com-
plaint Ψ , e.g yes/no) together with the complaint Ψ . If the votes are positive
in the majority, S presents the tuple of signed votes V to Tap , the last token
provider in the sequence chosen by A:

3) S −→ Tai : { Reveal,Φi,Ψ,H,V }KTai

4) Tai −→ S : { Φi−1 }KS

The last two steps are repeated several times, tracing backwards through the
sequence Ta1 , . . . ,Tap chosen by A, before finally obtaining KA.

3 Analysis

The protocol is subject to the following serious vulnerabilities:

Service Misuse. Any of the identity token providers can misuse services of S
(or let someone else to do that) and, furthermore, it can implicate any entity of
its choice in such a misuse:

Suppose Tai is a dishonest token provider. He can present any intermediate token
which he receives during the sign-up protocol to S, and obtain an identifier to
use the service. He can misuse the service and in doing so implicate the user who
initiated the creation of the intermediate token.

Moreover, since the identity token takes the form

[{ . . . [{KA}KTa1
]K−

Ta1

. . . }KTap
]K−

Tap

and Ta1 has access to A’s public key KA, he can create [{KA}KTa1
]K−

Ta1

and

anonymously request the signature services from Ta2 , . . . ,Tap in order to create
the full token for A.

It is evident that such vulnerabilities are possible due to putting full trust
on token providers and generating identity token ΦA that is not tied to an
anonymous key KÂ, i.e. whoever gets hold of the token can use it with a key of
his own.

In addition, the authors of the protocol do not spell out assumptions they
make on the anonymous channels. Thus, one could also claim that because a
message anonymously sent by A at step 1a does not include “reply instructions”,
e.g. a temporary public key KÂ, any dishonest party C that can eavesdrop on
A’s outgoing messages of the protocol can acquire a valid identity token ΦA: C
intercepts/copies messages, which are to be sent anonymously by A, and then,
replays them anonymously to all Tais in order to receive ΦA which can be used
to request services from S. Clearly, similar, but a weaker statement can be said
of a dishonest entity that can eavesdrop on any of Tais’ connections.

Note that in any case, a dishonest Tai or whoever misused the services of S
with ΦA, can not be shown to have cheated.

On Anonymity with Identity Escrow 239

Identity Compromise (1). Suppose A has identified the sequence of token
providers Ta1 ,Ta2 , . . . ,Tap , and Ta1 is dishonest. Then the service provider S in
a coalition with Ta1 can identify the identity token that A has submitted to S,
viz. ΦA:

Suppose Ta1 is dishonest, i.e. it reveals to S identity tickets it issues. Then it
takes at most nk−1 number of operations (ITKSig requests and encryptions),
where n is the total number of identity token providers and k is the length of
A’s requests chain, for the coalition to find out ΦA - a straightforward brute-force
search.

However, if we allow the coalition to eavesdrop on messages of other token
providers Tai , then the number of operations they need to perform goes down
to at most n(k − 1). This is done as follows:

– The coalition starts noting in a set M all the messages that other token
providers as well as S receive from the moment Ta1 sends Φ1.

– Upon reception of Φis check if any is in M , else wait until one of them is.
– Repeat the above steps until ΦA is found.

So, it is now possible to find the corresponding token for the chosen identity
within polynomial time in k modulo the costs of eavesdropping.

Identity Compromise (2). Suppose S has successfully processed a complaint
about a particular user. Then S can reveal the identity of any subsequent user
of the service.

Once S has successfully processed a complaint, he is in possession of the infor-
mation Ψ,H,V corresponding to the complaint. He can use this to make Reveal
requests to any sequence of Ti’s corresponding to some other protocol session,
and thereby break its anonymity.

Other Weaknesses. The protocol also has the following undesirable proper-
ties/glitches:

– Any third party can find out who misused the services of an anonymous
service provider S.

– A dishonest service provider S can adjust the set H to include “convenient”
adjudicators, when requesting to reveal the identity of an anonymous user
in the complaint resolution protocol.

– Obviously, the last message in the complaint resolution protocol needs to be
authenticated.

4 Improved Protocol

In order to present the protocol concisely, we omit details about A’s choice of
the adjudicators H ⊆ E. We use just one adjudicator, which we note E.

240 A. Mukhamedov and M.D. Ryan

4.1 The Protocol

It also consists of two parts - signup and complaint resolution - that have the
same purpose as the previous ones, but with a different structure.

Signup. A chooses a sequence Ta1 ,Ta2, . . . ,Tan of elements of T (possibly with
duplications). In contrast with the previous protocol, we distinguish two tem-
porary keys for A. A creates a temporary service public key K[A] which she will
use to identify herself to S. Additionally, she creates a public key KÂ which she
will use in anonymous communication with token providers, to indicate who the
reply needs to be sent to. The notation A |−→ B means that A anonymously
sends a message to B. In this case, B does not know A’s identity. Similarly,
A −→| B means that B receives a message anonymously, from A; A does not
know B’s identity.

1) A |−→ Ta1 : { InitITKReq,K[A], KÂ }KTa1

2) Ta1 −→| A : { Φ1 }KÂ
,

where Φ1 = [{ InitITKReq,K[A] }KTa1
]K−

Ta1

By including the service key K[A] in the message of step 1, we will later have
this key associated with A’s identity token in order avoid the Service Misuse
attack, whereby anyone who acquires her token can use it to obtain a service on
behalf of A from S. Note that, in contrast with the previous protocol, A has not
revealed her identity to Ta1 .

For i = 1 to n− 2:

∗

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1a) A |−→ Tai+1 : { ITKReq, Φi, NTai+1 ,KÂ }KTai+1

where for i > 1 Φi = [{ Φi−1, NTai ,KÂ }KTai
]K−

Tai

2a) Tai+1 −→| A : { [{ Φi, NTai+1 , KÂ }KTai+1
]K−

Tai+1

}KÂ

Each time A sends a message to Tai containing Φi−1, NTai ,KÂ and receives
back from it a message with Φi = [X]K−

Tai

, she checks that X =

{ Φi−1, NTai ,KÂ }KTai
, by reconstructing the encryption. By the end of the

sequence of messages (1a, 2a) (n− 2 times), A has obtained the token Φn−1:

[{ [{ . . .
[{ [{InitITKReq,K[A]}KTa1

]K−
Ta1

, NTa2 , KÂ}KTa2
]K−

Ta2

. . . }KTan−2
]K−

Tan−2

, NTan−1}KTan−1
]K−

Tan−1

which serves as a disguise of her key K[A]. Note the nonces NTai in the above
steps, generated by A. They are necessary in order to preclude the Identity
Compromise (1) attack (see Analysis section).

On Anonymity with Identity Escrow 241

We assume that all agents receiving a signed message verify the signature.
Thus, on receiving message (1a), Ta+1 verifies that the token has been signed by
another token provider before he signs it and sends it on.

Next, A reveals her identity to Tan , by signing the token Φn−1. Steps 3, 4, 3a,
4a reverse this sequence of encryptions, and at the same time they build up the
identity token Φ̃n−1.

3) A |−→ Tan : { [ITKSig, Φn−1, A]K−
A
}KTan

4) Tan −→| A : { Φ̃1 }KA ,
where Φ̃1 = [{ [ITKSig, Φn−1, A]K−

A
}KTan

,Φn−1]K−
Tan

After step 3a, before sending out a response, token provider Tan−i checks
that the key KÂ supplied in the ITKReq request matches the one embedded in
Φn−i (cf. step 2a above). The same rule applies to Ta1 at step 5. (Both token
providers also check that Φ̃ contained in the ITKReq request was signed by some
token provider.)

For i = 1 to n− 2:

∗

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3a) A |−→ Tan−i : { ITKSig, Φ̃i, NT′an−i , KÂ }KTan−i

where for i > 1 Φ̃i = [{ Φ̃i−1, NT
′
an−i+1

}KTan+1−i
, Φn−i]K−

Tan+1−i

4a) Tan−i −→| A : { [{ Φ̃i, NT′an−i
}KTan−i

,Φn−i−1]K−
Tan−i

}KÂ

5) A |−→ Ta1 : { ITKSig, Φ̃n−1, NT′a1 ,KÂ }KTa1

6) Ta1 −→| A : { [{ Φ̃n−1, NT′a1
}KTa1

,K[A]]K−
Ta1

}KÂ

Upon reaching Ta1 we have the identity token for A:

Φ̃A = [{ . . . [{Φ̃1, NT′an−1
}KTan−1

,Φn−2]K−
Tan−1

. . . NT′a1
}KTa1

,K[A]]K−
Ta1

The token Φ̃A associates the K[A] with A, and therefore can only be used by
an entity which knows the private key corresponding to K[A].

7) A |−→ S : { Φ̃A, K[A] }KS

A presents the token to S and initiates the service. S checks that the key
K[A] that A provided is contained inside the token which is signed by one of the
providers.

Complaint Resolution. We assume that a complaint ΨK[A] is uniquely asso-
ciated with A’s service key K[A]. It must be verifiable by an adjudicator E and
not forgeable by S. If the adjudicator agrees with the complaint he signs it and
then sends it back to S.

242 A. Mukhamedov and M.D. Ryan

1) S −→ E : { AdjReq,ΨK[A] ,S }KE

2) E −→ S : { [ΨK[A]]K−
E
}KS

3) S −→ Ta1 : { Reveal, Φ̃A, Ψ̃ ,S }KTa1

where Ψ̃ = [ΨK[A]]K−
E

4) Ta1 −→ S : { Φ̃n−1, NT
′
a1

, Ψ̃ }KS

For i = 1 to n− 2:

∗

⎧⎪⎨⎪⎩
3a) S −→ Tai+1 : { Reveal, ((Φ̃n−i, NTai , NT

′
ai

), . . . ,
(Φ̃n−1, NT

′
a1

), Φ̃n), Ψ̃ ,S }KTai+1

4a) Tai+1 −→ S : { Φ̃n−i−1, NTai+1 , NT
′
ai+1

, Ψ̃ }KS

5) S −→ Tan : { Reveal, ((Φ̃1, NTan−1 , NT
′
an−1

), . . . , Φ̃n), Ψ̃ }KTan

6) Tan −→ S : { [ITKSig, Φn−1,A]K−
A

, Ψ̃}KS

In message 3a, the tuple of Φ̃is serves to prevent complaint resolution mes-
sages in one session being used in another. Each Tai checks that the sequence
he receives is correct, using the nonces NT′ai

, and that the last element of the
sequence is the token that the complaint ΨK[A] is uniquely associated with.

At the nth iteration S reveals the identity of the user when it receives [ITKSig,
breakΦn−1,A]K−

A
from Tan . Importantly, in the sequence of unfoldings of Φ̃ais,

S also keeps track of Φais inside them, using the nonces NTai , in order to make
sure that Φn−1 is formed from the key she was given in the service request
step, viz. it is KÂ. If there is a mismatch, she finds out which Tai cheated, and,
furthermore, has evidence to prove that to any other party.

4.2 Properties of the Protocol

If the token providers try to generate tokens by themselves, they can be shown
to have cheated. Also the token created for A is unusable by any other entity
that acquires it.

If at least one of the token providers in the sequence Ta1 ,Ta2 , . . . ,Tan is honest,
then A’s identity is not revealed without valid complaint. Thus, the protocol
avoids the identity compromise attacks of section 3.

5 Conclusions

The protocol for anonymity with identity escrow in [4] is shown to have some
serious flaws. We have presented an improved protocol to achieve the same aim,
and in the future work we will verify the protocol using appropriate tools, such
as Proverif [1] or Isabelle [6].

On Anonymity with Identity Escrow 243

References

1. B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In
S. Schneider, editor, 14th IEEE Computer Security Foundations Workshop, pages
82–96, Cape Breton, Nova Scotia, Canada, June 2001. IEEE Computer Society
Press.

2. J. Kilian and E. Petrank. Identity escrow. In Advances in Cryptology (CRYPTO’98),
number 1462 in LNCS, pages 169–187. Springer Verlag, 1998.

3. F. Leighton. Failsafe key escrow systems. Technical Memo 483, MIT Laboratory
for Computer Science, 1994.

4. L. Marshall and C. Molina-Jiminez. Anonymity with identity escrow. In T. Dim-
itrakos and F. Martinelli, editors, Proceedings of the 1st International Workshop
on Formal Aspects in Security and Trust, pages 121–129, Istituto di Informatica e
Telematica, Pisa, 2003.

5. S. Micali. Fair public-key cryptosystems. In Advances in Cryptology (CRYPTO’92),
number 740 in LNCS. Springer Verlag, 1993.

6. L. C. Paulson. The inductive approach to verifying cryptographic protocols. J.
Computer Security, 6:85–128, 1998.

7. M. O. Rabin. Efficient dispersal of information for security, load balancing and fault
tolerance. Journal of the ACM, 36(2):335–348, 1989.

Towards Verification of Timed Non-repudiation
Protocols

Kun Wei and James Heather

Department of Computing, University of Surrey, Guildford,
Surrey GU2 7XH, UK

{k.wei, j.heather}@surrey.ac.uk

Abstract. Fairness of non-repudiation is naturally expressed as a live-
ness specification, as in [Sch98]; to formalize this idea, we apply the
process algebra CSP to analyze the well-known Zhou-Gollmann proto-
col. We here model and verify a variant of the ZG protocol that includes
a deadline (timestamp) for completion of the protocol, after which an
agent can no longer initiate the recovery protocol with the TTP to get
hold of the non-repudiation evidence. The verification itself is performed
by the FDR model-checker.

1 Introduction

Security protocols are often complex because they represent concurrent
systems in which various entities can run independently and simultaneously.
Consequently, constructing proofs of correctness by hand can be arduous and
error-prone.

Over the past decade, formal methods have been remarkably successful in
their application to the analysis of security protocols. For example, the combi-
nation of CSP and FDR has proved to be an excellent tool for modelling and
verifying safety properties such as authentication and confidentiality. However,
non-repudiation properties have not yet been mastered to the same degree since
they must often be expressed as liveness properties and the vast bulk of work to
date has been concerned only with safety properties.

Schneider shows in [Sch98] how to extend the CSP approach to analyze non-
repudiation protocols. His proofs of correctness, based on the traces and the
stable failures models of CSP as well as on rank functions, are constructed by
hand. For safety properties, one usually assumes that one honest party wishes
to communicate with another honest party, and one asks whether a dishon-
est intruder can disrupt the communications so as to effect breach of security.
When considering non-repudiation, however, we are concerned with protecting
one honest party against possible cheating by his or her interlocutor. Thus a
non-repudiation protocol enables parties such as a sender Alice and a responder
Bob to send and receive messages, and provides them with evidence so that nei-
ther of them can deny having sent or received these messages when they later
resort to a judge for resolving a dispute.

There are two basic types of non-repudiation: Non-repudiation of Origin
(NRO) provides Bob with evidence of origin that unambiguously shows that

T. Dimitrakos et al. (Eds.): FAST 2005, LNCS 3866, pp. 244–257, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Towards Verification of Timed Non-repudiation Protocols 245

Alice has previously sent a particular message, and Non-repudiation of Receipt
(NRR) provides Alice with evidence of receipt that unambiguously shows that
Bob has received the message. Unforgeable digital signatures are usually the
mechanism by which NRO and NRR can be obtained.

However, a major problem often arises: there may come a point during the
run at which either Alice or Bob reaches an advantageous position; for example,
Alice may have collected all the evidence she needs before Bob has collected his,
and Alice may then deliberately abandon the protocol to keep her advantageous
position. Usually we will want to ensure that the protocol is fair.

• Fairness guarantees that neither Alice nor Bob can reach a point where he
or she has obtained non-repudiation evidence, but where the other party is
prevented from retrieving any required evidence that has not already been
obtained.

Obviously, fairness is the most difficult property to achieve in the design of
such protocols, and several different solutions have been proposed. Two kinds of
approach are discussed in [KMZ02], classified according to whether or not the
protocol uses a trusted third party (TTP). The first kind of approach providing
fairness in exchange protocols is based on either a gradual exchange [Ted83] or
probabilistic protocol [MR99]. Without the involvement of a TTP, a sender Alice
gradually releases messages to a responder Bob over many rounds of a protocol,
with the number of rounds chosen by Alice and unknown to Bob. Bob is supposed
to respond for every message, and any failure to respond may cause Alice to
stop the protocol. However, such protocols require that all parties have the same
computational power, and a large number of messages must be exchanged. The
other kind of approach uses a TTP to handle some of the evidence. Many fair
non-repudiation protocols use the TTP as a delivery authority to establish and
transmit some key evidence. The efficiency of such protocols depends on how
much a TTP is involved in the communication, since heavy involvement of the
TTP may become a bottleneck of communication and computation.

In this paper, we will verify fairness of the timed Zhou-Gollmann proto-
col [ZG97] with an off-line TTP—that is, a TTP that is involved in the protocol
only when parties are in dispute. To model such a protocol, we build a model
of all of the entities involved in the network: a spy, a TTP, an honest party and
so on. The factor of time is also considered in such a protocol; for example, it is
reasonable that the responder should know when the evidence is available from
the TTP, so that it does not have to poll the server at regular intervals, causing
unnecessary network traffic.

In the CSP model, fairness is naturally described as a liveness property. It
is impossible for fairness to guarantee that both Alice and Bob can collect the
required evidence simultaneously, since we are dealing with an asynchronous
network, but it does guarantee that either of them must be able to access the
evidence as long as the other party has obtained it.

Fairness in the Zhou-Gollman protocol relies on the assumption that the com-
munication channels between a TTP and all parties are resilient. A resilient
channel may delay a message for a finite, unknown amount of time, but will

246 K. Wei and J. Heather

eventually deliver it to its destination. Communication between parties, how-
ever, goes across unreliable channels that allow a message to be lost, delayed, or
even delivered to the wrong destination.

The paper is organised as follows: the CSP notation is briefly introduced,
and the timed Zhou-Gollmann protocol is described. We give details of the CSP
modelling for every entity involved in a run, and its associated FDR encoding.
Finally, we discuss the implications of the successful verification, and talk about
future work.

2 CSP Notation

CSP is an event-orientated language for describing concurrent systems and their
interactions. A security protocol is a concurrent system in which a series of
messages are exchanged among the various parties involved. CSP is therefore
well suited to the modelling and analysis of security protocols.

In CSP, a system can be considered as a process that might be hierarchically
composed of many smaller processes. An individual process can be combined
with events or other processes by operators such as prefixing, choice, parallel
composition, and so on. For safety properties, the traces model of CSP is enough.
In this paper, we use the stable failures model of CSP to verify fairness in the ZG
protocol. We will briefly illustrate the CSP language and the semantic models;
for a fuller introduction, the reader is referred to [Ros98, Sch99].

Stop is a stable deadlocked process that never performs any events. The pro-
cess c → P behaves like P after performing the event c. A event like c may be
compounded; for example, one often used patten of events is c.i .j .m consisting
of a channel c, a sender i , a receiver j and a message m.

The external choice P1 � P2 may behave either like P1 or like P2, depending
on what events its environment initially offers it. The traces of internal choice
P1 � P2 are the same as those of P1 � P2, but the choice in this case is non-
deterministic.

The process P1 A‖B P2 is the process where all events in the intersection of A
and B must be synchronized, and other events within A and B can be performed
independently by P1 and P2 respectively. An interleaving P1 ||| P2 executes each
part entirely independently and is equivalent with P1 ‖

∅
P2.

The process P \ A will pass through the same events as P, but events in the
set A become be invisible. The renamed process P [a ← b] means that the event
a is completely replaced by b in the process P . In addition, processes may also
be described recursively whenever such descriptions are well defined.

A trace is defined to be a sequence of finite events. A refusal set is a set of
events from which a process can fail to accept anything no matter how long it
is offered; refusals(P/t) is the set of P ’s refusals after the trace t ; then (t ,X) is
a failure in which X denotes refusals(P/t). If the trace t can make no internal
progress, this failure is called a stable failure.

Liveness is concerned with behaviour that a process is guaranteed to make
available, and can be inferred from stable failures; for example, if, for a fixed

Towards Verification of Timed Non-repudiation Protocols 247

trace t , we have a ∈ X for all stable failures of P of the form (t ,X), then a must
be available after P has performed t .

Verification in FDR is done by means of determining whether one process
refines another. In the stable failures model, this equates to checking whether
the traces and failures of one process are subsets of the traces and failures of the
other:

P �F Q ≡ traces(P) ⊇ traces(Q) ∧ failures(P) ⊇ failures(Q)

For the properties we are considering, if P meets the properties we are veri-
fying, then Q also meets them if Q refines P .

3 The Timed Zhou-Gollmann Protocol

Zhou and Gollmann present a basic fair non-repudiation protocol using a
lightweight TTP in [ZG96], which supports non-repudiation of origin and non-
repudiation of receipt as well as fairness. They then propose an improved protocol
in [ZG97], with an off-line TTP that is more efficient in environments in which
the two parties usually play fair in a protocol run, and want to resort to the TTP
only when they are in dispute. In addition, it is possible (and, indeed, desirable)
to include a timeout in the protocol, so that the responder will know at what
point he will be able to recover evidence from the TTP.

The main idea of all Zhou-Gollmann protocols is that a sender Alice delivers
the ciphertext and the message key to Bob separately; the ciphertext is sent
from the originator Alice to the recipient Bob, Alice then sends the message key
encrypted with her secret key to Bob or the TTP. Finally Alice and Bob may get
the evidence or confirmation messages from the TTP to establish the required
non-repudiation. The notation below is used in the protocol description.

• M : message to be sent from A to B .
• K : symmetric key defined by A.
• C : commitment (ciphertext) for message M encrypted with K .
• L: a unique label used to identify a particular protocol run.
• fNRO , fNRR, fEOO , fEOR, fSUB , fCON : flags indicating the purpose of a signed

message.
• T : the deadline by which the TTP must have been asked to make the evi-

dence available to the public.
• si : an asymmetric key used to generate i ’s digital signature.

After cutting down the plaintext part, the simplified protocol can be divided
into a main protocol and a recovery protocol. In the normal case, the sender Alice
and the responder Bob will exchange messages and non-repudiation evidence
directly, described as follows:

1. A→ B : sA(fNRO ,B ,L,T ,C)
2. B → A : sB (fNRR,A,L,T ,C)

248 K. Wei and J. Heather

3. A→ B : sA(fEOO ,B ,L,K)
4. B → A : sB (fEOR,A,L,K)

And if Alice does not get message 4 from Bob after sending message 3, she
then launches the recovery protocol to get the associated evidence from the TTP.

1. A→ TTP : sA(fSUB ,B ,L,T ,K)
2. B ↔ TTP : sT (fCON ,A,B ,L,T ,K)
3. A↔ TTP : sT (fCON ,A,B ,L,T ,K)

We briefly examine the protocol step by step to see how it works. Firstly,
Alice composes a message including a flag, a unique label L, the receiver’s name
B and a ciphertext C = K (M), along with a chosen deadline T (which is to
be interpreted according to the TTP’s clock); Alice then signs the message with
her private key and sends it to Bob. Secondly, Bob collects the message as one
piece of evidence in which the label L identifies the run of the protocol, and then
Bob responds with his signed message to provide A with evidence that B really
has received C in this run. Bob can also refuse to respond to Alice if he is not
satisfied with the deadline T .

After she has got a response, Alice directly sends the encrypted message key K
to Bob, and Bob then sends the associated evidence back again. The protocol is
now successfully completed if no dispute occurs; however, if Alice does not get her
evidence at step 3 of the main protocol, she can launch the recovery protocol and
submit a message to the TTP to retrieve the evidence. The TTP will check the
deadline T first to determine whether or not to accept the request. If the request
comes in before the deadline, the TTP will generate the evidence and make it
available to Alice and Bob. The advantage of this deadline is that if Bob does
not receive message 3 from Alice, he does not have to poll the TTP indefinitely
to see if Alice has initiated the recovery protocol and thus made the key and the
evidence available to him. He can simply wait until time T and then poll the
TTP. If Alice has already initiated the recovery protocol then he will be able to
get the key K and the non-repudiation evidence; if she has not done so then he
will not be able to get the key or the evidence, but he will know that Alice cannot
get the non-repudiation evidence either, since the deadline has now passed.

The guarantee of fairness of such a protocol comes from an assumption that
the channels between TTP and the parties are resilient; that is, messages may
be delayed, but will be eventually arrive in a finite amount of time. However,
the channels between Alice and Bob can be unreliable; that is, the medium may
delay, lose or misdirect messages.

Although Bob in the execution of the protocol can be temporarily in an ad-
vantageous position, Alice and Bob should be in a fair position at the end of the
protocol. The introduction of the deadline T does in principle compromise the
fairness of the protocol; for instance, Alice may not get the evidence from Bob
at step 4 in the main protocol, but the submission of Alice’s request to initiate
the recovery protocol may be so severely delayed that the deadline has passed
by the time it arrives and the TTP refuses to respond to it. Alice will in this

Towards Verification of Timed Non-repudiation Protocols 249

instance not get all the required evidence, even though Bob has obtained his.
As suggested in [ZG97], Alice has to choose T to be large enough that this issue
will not arise in practice.

4 CSP Modelling

Fairness says that if either A or B has got full evidence, the other party cannot be
prevented from retrieving the evidence indefinitely. We cannot assert for verifying
fairness that once A has obtained the evidence then B must have obtained the
evidence as well, because there may be a delay between A’s reception and B’s
reception. However, we can ensure that the evidence must be available to B, or
that a specific action must be about to happen to enable B to get the evidence
in the future.

To check a protocol like this one with CSP, we have to build models of the
parties, the TTP and the medium and see how they can interfere with each
other. Since the protocol is used to protect parties that do not trust each other,
we do not need to model a special intruder party. However, fairness is only
guaranteed to the party who runs in accordance with the protocol; for example,
if A releases the symmetric key K before B responds, A will certainly place
herself in a disadvantageous position.

In our model, we directly formalize the outcome of the TTP’s test for whether
the deadline has passed, without modelling specific values of T ; in other words,
we model the deadline T as a boolean variable. When the TTP judges whether T
has expired, the outcome will be either true or false, and the TTP will accordingly
either accept or refuse the request. The deadline test can be modelled within the
TTP using internal choice.

4.1 Data Types

The above description of the protocol indicates that the message space contains
flags, labels, various keys, names of parties, text messages, the deadline and
combinations of these. Encryption, as is typical in these situations, are treated
symbolically.

Like other model checkers, FDR can only verify systems with a reasonable
number of states. Therefore, we assume that only two parties are communicating,
and we restrict the number of possible messages of each data type.

datatype fact = Sq.Seq(fact) |
SK.(fact,fact)| Encrypt.(fact,fact) |
Alice | Bob | TTP |
pkA | pkB | pkT | skA | skB | skT |
fNRO | fNRR | fEOO | fEOR | fSUB | fCON |
La | Lb | Ka | Kb | T | AtoB | BtoA

where the type fact is a collection of all constants, and it can be used to represent
any message appearing in the protocol.

250 K. Wei and J. Heather

We also define some sets, functions and definitions to represent legitimate
messages, symbolic encryption and mapping of labels, keys and messages with
the identities of parties.

We assume that no party is able to forge other parties’ digital signatures; that
is, parties never release their private keys. In our scenario, we will treat A as
a dishonest party, or a spy, and B is an honest party who always performs in
accordance with the protocol; A and B may behave either as a sender or as a
responder. A and B may run the protocol many times, and A may make use of
the information deduced from B’s messages to initiate a new run.

4.2 Defining Honest Parties

We now represent the behaviour of an honest party in the timed ZG protocol.
The protocol specification assumes that the channel between parties is unreliable,
whereas the channel between the TTP and parties is resilient. We define, as
follows, the transmission of messages using CSP channels.

channel trans,rec:agents.agents.Umessages
channel send,get:allagents.allagents.Rmessages
channel evidence:agents.messages

where trans and rec are for unreliable channels, send and get are for resilient
channels; the channel evidence represents announcement of parties’ obtained
evidence; Umessages and Rmessages include messages in unreliable channels
and resilient channels respectively.

A party can act either as a sender or as a responder; once its labels have run
out, it acts only as a responder.

User(id,ls) = ls!=<> & Send(id,ls)
[] Resp(id,ls)

When acting as a sender, the party chooses the facts from its own knowledge
to construct and transmit the messages in turn. In order to keep the size of all
parties’ message spaces fairly small, the parties A and B have only one value for
labels, message keys and plaintext, but A may get some of information from B
such as the message key Kb during the execution of the protocol and use it in
later runs.

We integrate all behaviour of a party in the main protocol and the recovery
protocol into one process. After A sends the message to B at step 3 in the main
protocol, she may wait for a response from B and finish the protocol, or initiate
the recovery protocol to retrieve the evidence from the TTP.

Send(id,ls) = |~|a:diff(agents,{id})@ (|~|l:label(id)@
(|~|k:symkeys(id)@ (|~|m:text(id)@

trans.id.a.ske(sk(id),Sq.<fNRO,a,l,T,encrypt(k,m)>) ->
rec.id.a.ske(sk(a),Sq.<fNRR,id,l,T,encrypt(k,m)>) ->
trans.id.a.ske(sk(id),Sq.<fEOO,a,l,k>) ->

Towards Verification of Timed Non-repudiation Protocols 251

((rec.id.a.ske(sk(a),Sq.<fEOR,id,l,k>) -> User(id,tail(ls)))
[]

(send.id.TTP.ske(sk(id),Sq.<fSUB,a,l,T,k>) ->
get.id.TTP.ske(skT,Sq.<fCON,id,a,l,T,k>)->User(id,tail(ls)))))))

The responder process performs the protocol from the opposite perspective.
Note that we assume the responder can refuse to accept messages including its
own labels, since the labels are usually generated associated with the plaintexts
and the message keys; therefore, it is reasonable to suppose that the receiver is
vigilant enough to spot such abuses.

Resp(id,ls) = []a:diff(agents,{id})@ ([]l:diff(labels,label(id))
@([]k:symmetrickey@([]m:plaintext@

rec.id.a.ske(sk(a),Sq.<fNRO,id,l,T,encrypt(k,m)>)->
trans.id.a.ske(sk(id),Sq.<fNRR,a,l,T,encrypt(k,m)>)->

((rec.id.a.ske(sk(a),Sq.<fEOO,id,l,k>) ->
trans.id.a.ske(sk(id),Sq.<fEOR,a,l,k>)-> User(id,ls))
[]

(get.id.TTP.ske(skT,Sq.<fCON,a,id,l,T,k>) ->User(id,ls))))))

The responder does accept any commitment because it does not know what
the commitment means until the end of the run. In addition, A may not send
message 3 to B at all; B must thus be able to check whether the evidence is
available from the TTP.

For the purpose of verification, we define a process Show(id) to show the
evidence that a party has obtained. This process may show the evidence to the
network as long as the relevant party has got the evidence. Finally, a well-behaved
party is described as:

Party(id,ls) = User(id,ls) [|{|rec,get|}|] Show(id)

4.3 Creating a Spy

In the modelling of the non-repudiation protocol, we do not define a special
party, a spy, as different from the legitimate parties. On the contrary, we assume
that one of two communicating parties is a spy who may be able to deduce some-
thing of value from the messages it has received. The non-repudiation protocol
is supposed to provide fairness for an honest party even if the other party is
a spy. Our spy model roughly corresponds to Roscoe’s lazy spy model [Ros98],
but slightly modified to suit our case. We here represent some key parts of the
model; more details may be found in [Ros98].

A spy first has a set of deductive rules; for example, if it knows all members
of a sequence, then it can build the sequence. A deduction is a pair (X,f) where
X is a finite set of facts and f is an individual fact. Thus, anyone in possession of
X can construct f as well. In our spy model, three types of deduction are built
based on constructing and extracting sequences, symmetric-key encryption and
public-key encryption.

252 K. Wei and J. Heather

The spy has an initial basic knowledge, such as public keys, labels and so
on, and can further close up such basic facts by means of the Close function
to construct a number of legitimate messages before the start of the protocol.
The full initial knowledge of the spy is constructed by closing up the initial basic
knowledge under deduction rules. In this case we chose Alice as a spy, what she
initially knows may then be represented as follows:

IK= {Alice,Bob,TTP,pkA,pkB,pkT,skA,T,
fNRO,fNRR,fEOO,fEOR,fSUB,fCON,La,Ka,AtoB}

Known = Close(IK)

In order to restrict the state space to a manageable size, we define a new
set of deductions whose conclusion is something that the spy does not know
yet, but that it will learn. In other words, the spy can never deduce anything
it already knows. Additionally, to reduce the size of state space further and to
ensure efficient compilation by the model checker, we define a parallel network
which has one process for every fact inside the spy’s LearnableFacts.

ignorantof(f) = member(f, messages)& learn.f -> knows(f)
[] infer?t:{(X,f’)|(X,f’)<-Deductions,f==f’}->knows(f)

knows(f) = member(f,messages)&say.f -> knows(f)
[] member(f,messages)&learn.f->knows(f)
[] infer?t:{(X,f’)|(X,f’)<-Deductions,member(f,X)}->knows(f)

where Deductions is a collection of all possible deductive rules only for learnable
facts.

Finally, the spy is then constructed by putting all these processes in parallel,
hiding the inferences, and applying the chase operator1.

Spy = chase((||f:LearnableFacts@[AlphaL(f)]ignorantof(f))
\{|infer|}) ||| SayKnown

where SayKnown makes the spy say or learn legitimate messages in its Known
facts.

To make the spy useful in a real network, we rename it so that it may commu-
nicate with other parties. Also, we provide the spy with the capability to show
its evidence.

RenSpy(id) =((Spy[[say.f<-trans.a.b.f,learn.f<-rec.a.b.f|
a.b.f<-Ucomm,a==id]]

[[say.f<-send.a.b.f,learn.f<-get.a.b.f|
a.b.f<-Rcomm,a==id]])

[|{|rec,get|}|] Show(id))

where Ucomm and Rcomm are used to reduce unnecessary states; for example,
Rcomm may restrict that one of agents must be the TTP and f must be the
messages circulating in the resilient channel.
1 The chase operator is designed specifically for this purpose; the reader is invited to

consult [For97] for more information.

Towards Verification of Timed Non-repudiation Protocols 253

4.4 TTP and Medium

The trusted third party is supposed to act in accordance with its role in the
protocol; that is, the TTP accepts signed messages, generates new evidence and
makes them available to associated parties. The TTP also refuses to respond
the parties whenever the deadline T has expired. The test for expiry of the
deadline T is modelled by an internal choice in CSP. It is therefore modelled as
follows:

Tnot(m)=send?a:agents!TTP!m->(Tnot(m) |~| Tknows(Gen(m)))
Tknows(S)=get?m:S->Tknows(S)[]idle-> Tknows(S)

TrustTP = (|||m:mess_SUB@ Tnot(m))

where, obviously, the TTP will not confirm the party’s submission after T
in the Tnot(m); if the TTP accepts it, the message will go into the process
Tknows where the evidence will be available to both parties. Note that we imple-
ment the possibility of delays in the resilient channels by introducing an action
idle in the Tknows(S). When the TTP receives a message, it then can hold
the message in a finite amount of time, but will send it out eventually. The
TTP only accepts messages with the label fSUB . Also, we define a function
Gen(m) to transform submitted messages to confirmed messages for involved
parties.

The medium provides two types of message delivery service: one is an
unreliable channel where messages might be lost, delayed and sent to any ad-
dress; another one is a resilient channel where messages might be delayed, but
will eventually arrive, and also be guaranteed not to arrive at the wrong ad-
dress. Since the resilient channel has been modelled in the definition of the
TTP, the model of the medium here is defined only for the unreliable
channel:

Hears(m) = member(m,Umessages)&
trans?a?b:diff(agents,{a})!m -> Middle(m)

Middle(m) = idle -> Middle(m)
[]lost -> Hears(m)
[]rec?a?b:diff(agents,{a})!m -> Hears(m)

Medium = |||m:Umessages@Hears(m)

The medium is modelled exactly in terms of its description in the protocol.
We define two channels idle and lost to represent messages being delayed or
lost.

4.5 Specification and Verification

The two parties and the TTP transmit messages via unreliable channels and
resilient channels in the medium as shown in Figure 1. It would be desirable to
allow more potential protocol participants, since the protocol is expected to be

254 K. Wei and J. Heather

A

TTP

B

MEDIUM

trans

rec

send

get

resilient channel

unreliable channel

evidence.A evidence.B

trans

rec

Fig. 1. Network for a non-repudiation protocol

correct even in the presence of other parties of the network. However, a bigger
network would quickly give rise to state space explosion.

The entire network is the parallel combination of these components:

Network = ((RenSpy(Alice) ||| Party(Bob,<Lb>)
[|{|send,get|}|] TrustTP)

[|{|trans,rec|}|] Medium

We can then test for attacks on the protocol by checking whether this network
satisfies a specification encapsulating the fairness property.

Fairness is naturally specified by Schneider [Sch98] in the stable failures model
of CSP. The essence of his idea is that if one of the two parties has obtained
full evidence, then the other party either is already in possession of it or is able
to access it. We have slightly changed the above specification to meet the timed
Zhou-Gollmann non-repudiation protocol, and we give here two specifications
according to the different role of B.

First, we deal with the case where B acts as a responder. In the normal case,
if A has got evidence of receipt then B must be in a position to obtain evidence
of origin.

FAIR1(tr ,X) =̂ evidence.A.sB (fEOR,A,La,T ,Ka) in tr
∧ evidence.A.sB (fNRR,A,La,C) in tr
⇒
(evidence.B .sA(fNRO ,B ,La,Ka) ∈ X
∧ evidence.B .sA(fEOO ,B ,La,T ,Ka) ∈ X)

Towards Verification of Timed Non-repudiation Protocols 255

When a dispute arises, the specification is defined as follows:

FAIR2(tr ,X) =̂ evidence.A.sT (fCON ,A,B ,La,T ,Ka) in tr
∧ evidence.A.sB (fNRR,A,La,T ,C) in tr
⇒
get .B .TTP .sT (fCON ,A,B ,La,T ,Ka) ∈ X ∨
(evidence.B .sA(fNRO ,B ,La,T ,Ka) ∈ X
∧ evidence.B .sT (fCON ,A,B ,La,T ,Ka) ∈ X)

The above specification shows that if A holds the full evidence, then B must
either be able to get the evidence or have already obtained such evidence.

Secondly, we deal with the case in which B acts as a sender. For this case,
the specification is different from the above one, since a sender is in a weaker
position in the protocol. If no dispute arises:

FAIR3(tr ,X) =̂ evidence.A.sB (fEOO .A.Lb.Kb) in tr
∧ evidence.A.sB (fNRO .A.Lb.T .C) in tr
⇒
send .B .TTP .sB (fSUB .B .Lb.T .Kb) in tr ∨
send .B .TTP .sB (fSUB .B .Lb.T .Kb) ∈ X

Because of the unreliable channel between A and B, B may not obtain the
evidence, but he can not be prevented from initiating the recovery protocol.
Furthermore, if B has launched the recovery protocol, he then must be able to
get the evidence from the TTP.

FAIR4(tr ,X) =̂ send .B .TTP .sB (fSUB ,A,Lb,T ,Kb) in tr
⇒
get .B .TTP .sT (fCON ,B ,A,Lb,T ,Kb) ∈ X

To meet the fairness property of the timed Zhou-Gollmann protocol, the pro-
cess Network must satisfy the FAIR1–FAIR4 in the stable failures model of CSP.

The formal verification shows there is no more fault in the timed ZG protocol
under the assumptions described in this paper, other than the compromise caused
by the introduction of the deadline T . As the designers say, the deadline T may
result in the sender not getting the full evidence. In practice, the sender simply
has to choose T big enough and send K to the responder only when it has
sufficient time to launch the recovery protocol. In addition, the responder can
be temporarily in an advantageous position, but both of them will be in a fair
position at the end of the protocol run.

5 Discussion and Future Work

In this paper, we have modelled and analyzed the timed Zhou-Gollmann non-
repudiation protocol. Fairness, an important property in a non-repudiation pro-
tocol, requires that neither of two parties can establish evidence of origin or

256 K. Wei and J. Heather

evidence of receipt while still preventing the other party from obtaining such
evidence. In the CSP modelling, fairness is naturally described as a liveness
property in the stable failures model.

Although the introduction of the deadline T makes the protocol closer to re-
ality, it compromises the fairness of the parties. There are also two minor hidden
issues: one is that the responder can be temporarily in a advantageous position,
the other is that the sender may initiate the recovery protocol even when it has got
the evidence. The evidence will mean the same to a judge regardless of whether
it has been obtained through the main protocol or the recovery protocol, but it
might be considered problematic that it is easy for the responder to prove that
the initiator asked the TTP to intervene in the protocol execution. In the context
of electronic commerce, it may result in bad publicity if it is known that the parties
had to resort to the trusted third party to get the required evidence.

Some related work can be found in the literature concerning verification of
non-repudiation protocols using different approaches. Zhou et al. in [ZG98] firstly
use ‘BAN-like’ belief logic to check only safety properties of the non-repudiation
protocols. Schneider [Sch98] gives an excellent overview of the CSP modelling
and proves the correctness of properties using stable failures and rank functions;
however, the proofs are constructed by hand. Shmatikov and Mitchell in [SM01]
verify fairness as a monotonic property using Murϕ; that is, if fairness is broken
at one point of the protocol, the protocol will remain unfair. This approach
also cannot deal with liveness properties. Kremer and Raskin [KR01] use the
finite state model checker MOCHA to verify non-repudiation and fair exchange
protocols. This approach, which is rather different from ours here, can also cope
with liveness properties as well as safety properties. However, they have modelled
networks in which A and B can engage in only one run of the protocol.

We have shown that the combination of CSP and FDR is an excellent tool
to verify non-repudiation protocols. We also wish to cover timeliness; that is, we
wish to verify that all honest parties can reach a point where they can stop the
protocol while preserving fairness. We will extend our current model to cover
this issue in future work.

We still have some distance to go towards our aim of proving fairness of the
protocol in its full generality, with an unbounded number of participants and
atomic messages. Evans in[Eva03] gives a useful start on this issue by using rank
functions and a theorem prover, PVS, to verify safety properties. This approach
allows one to deal with networks with an infinite number of states and even a
infinite number of parties. In the future, we will investigate this approach and
apply it in the analysis of liveness properties of non-repudiation protocols.

References

[Eva03] Neil Evans. Investigating Security through Proof. PhD thesis, Royal Hol-
loway, University of London, 2003.

[For97] Formal Systems (Europe) Ltd. Failures-Divergence Refinement—FDR 2
user manual, 1997. Available from Formal Systems’ web site at http:
//www.formal.demon.co.uk/FDR2.html.

Towards Verification of Timed Non-repudiation Protocols 257

[KMZ02] Steve Kremer, Olivier Markowitch, and Jianying Zhou. An intensive survey
of non-repudiation protocols. Technical Report 473, 2002.

[KR01] Steve Kremer and Jean-François Raskin. A game-based verification of non-
repudiation and fair exchange protocols. Lecture Notes in Computer Science,
2154, 2001.

[MR99] Olivier Markowitch and Yves Roggeman. Probabilistic non-repudiation
without trusted third party. In Second Workshop on Security in Communi-
cation Network 99, 1999.

[Ros98] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall
International, 1998.

[Sch98] Steve A. Schneider. Formal analysis of a non-repudiation protocol. In Pro-
ceedings of the 11th IEEE Computer Security Foundations Workshop, 1998.

[Sch99] Steve A. Schneider. Concurrent and real-time systems: the CSP approach.
John Wiley & Sons, 1999.

[SM01] Vitaly Shmatikov and John C. Mitchell. Analysis of abuse-free contract sign-
ing. In FC ’00: Proceedings of the 4th International Conference on Financial
Cryptography, pages 174–191, London, UK, 2001. Springer-Verlag.

[Ted83] Tom Tedrick. How to exchange half a bit. In CRYPTO, pages 147–151,
1983.

[ZG96] Jianying Zhou and Dieter Gollmann. A fair non-repudiation protocol. In
Proceedings of the IEEE Symposium on Research in Security and Privacy,
pages 55–61, Oakland, CA, 1996. IEEE Computer Society Press.

[ZG97] J. Zhou and D. Gollmann. An efficient non-repudiation protocol. In Pro-
ceedings of The 10th Computer Security Foundations Workshop. IEEE Com-
puter Society Press, 1997.

[ZG98] J. Zhou and D. Gollmann. Towards verification of non-repudiation proto-
cols. In Proceedings of 1998 International Refinement Workshop and Formal
Methods Pacific, pages 370–380, Canberra, Australia, September 1998.

Author Index

Balasubramanyam, Poornima 16
Barrère, F. 217
Barthe, Gilles 112
Benzekri, A. 217
Bryans, Jeremy W. 81

Chakravarty, Manuel M.T. 171
Chatzikokolakis, Konstantinos 142
Chaudhary, Anant 16
Chothia, Tom 203

De Francesco, N. 63
Delicata, Rob 34
Duggan, Dominic 203

Enea, Constantin 96

Foley, Simon N. 127

Gollmann, Dieter 5

Heather, James 244

Klüwer, Johan W. 158
Ko, Calvin 16
Köpf, Boris 47
Koutny, Maciej 81

Laborde, R. 217
Levitt, Karl N. 16

Mantel, Heiko 47
Martini, L. 63
Mazaré, Laurent 81
Mukhamedov, Aybek 235

Pacheco, Olga 187
Palamidessi, Catuscia 142
Pancho-Festin, Susan 5

Randell, Brian 1
Rezk, Tamara 112
Ryan, Mark D. 235
Ryan, Peter Y.A. 1, 81

Saabas, Ando 112
Schneider, Steve 34
Song, Tao 16

Tseng, Chinyang Henry 16

Waaler, Arild 158
Wei, Kun 244
Winwood, Simon 171

Zhou, Hongbin 127

	Frontmatter
	Voting Technologies and Trust
	On the Formal Analyses of the Zhou-Gollmann Non-repudiation Protocol
	Formal Reasoning About a Specification-Based Intrusion Detection for Dynamic Auto-configuration Protocols in Ad Hoc Networks
	A Formal Approach for Reasoning About a Class of Diffie-Hellman Protocols
	Eliminating Implicit Information Leaks by Transformational Typing and Unification
	Abstract Interpretation to Check Secure Information Flow in Programs with Input-Output Security Annotations
	Opacity Generalised to Transition Systems
	Unifying Decidability Results on Protection Systems Using Simulations
	Proof Obligations Preserving Compilation
	A Logic for Analysing Subterfuge in Delegation Chains
	Probable Innocence Revisited
	Relative Trustworthiness
	Secure Untrusted Binaries --- Provably!
	Normative Specification: A Tool for Trust and Security
	Type-Based Distributed Access Control vs. Untyped Attackers
	A Security Management Information Model Derivation Framework: From Goals to Configurations
	On Anonymity with Identity Escrow
	Towards Verification of Timed Non-repudiation Protocols
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

